Schemes over algebraically closed fields #
We show that if X is locally of finite type over an algebraically closed field k,
then the closed points of X are in bijection with the k-points of X.
See AlgebraicGeometry.pointEquivClosedPoint.
def
AlgebraicGeometry.residueFieldIsoBase
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(x : ↥X)
(hx : IsClosed {x})
:
If X is a locally of finite type k-scheme and k is algebraically closed, then
the residue field of any closed point of x is isomorphic to k.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.SpecMap_residueFieldIsoBase_inv
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(x : ↥X)
(hx : IsClosed {x})
:
Spec.map (residueFieldIsoBase f x hx).inv = CategoryTheory.CategoryStruct.comp (X.fromSpecResidueField x) f
theorem
AlgebraicGeometry.SpecMap_residueFieldIsoBase_inv_assoc
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(x : ↥X)
(hx : IsClosed {x})
{Z : Scheme}
(h : Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing } ⟶ Z)
:
noncomputable def
AlgebraicGeometry.pointOfClosedPoint
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(x : ↥X)
(hx : IsClosed {x})
:
If k is algebraically closed, this is the k-point of X associated to a closed point.
Equations
Instances For
@[simp]
theorem
AlgebraicGeometry.pointOfClosedPoint_comp
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(x : ↥X)
(hx : IsClosed {x})
:
CategoryTheory.CategoryStruct.comp (pointOfClosedPoint f x hx) f = CategoryTheory.CategoryStruct.id (Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
@[simp]
theorem
AlgebraicGeometry.pointOfClosedPoint_comp_assoc
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(x : ↥X)
(hx : IsClosed {x})
{Z : Scheme}
(h : Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing } ⟶ Z)
:
@[simp]
theorem
AlgebraicGeometry.pointOfClosedPoint_apply
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(x : ↥X)
(hx : IsClosed {x})
(a : ↥(Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing }))
:
def
AlgebraicGeometry.pointEquivClosedPoint
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
:
{ p : Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing } ⟶ X // CategoryTheory.CategoryStruct.comp p f = CategoryTheory.CategoryStruct.id (Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing }) } ≃ ↑(closedPoints ↥X)
If k is algebraically closed,
then the closed points of X are in bijection with the k-points of X.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.pointEquivClosedPoint_symm_apply_coe
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(x : ↑(closedPoints ↥X))
:
@[simp]
theorem
AlgebraicGeometry.pointEquivClosedPoint_apply_coe
{X : Scheme}
{K : Type u}
[Field K]
[IsAlgClosed K]
(f : X ⟶ Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing })
[LocallyOfFiniteType f]
(p :
{ p : Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing } ⟶ X // CategoryTheory.CategoryStruct.comp p f = CategoryTheory.CategoryStruct.id (Spec { carrier := K, commRing := Field.toEuclideanDomain.toCommRing }) })
: