Documentation

Mathlib.AlgebraicGeometry.Fiber

Scheme-theoretic fiber #

Main result #

def AlgebraicGeometry.Scheme.Hom.fiber {X Y : Scheme} (f : X Y) (y : Y) :

f.fiber y is the scheme-theoretic fiber of f at y.

Equations
Instances For
    def AlgebraicGeometry.Scheme.Hom.fiberι {X Y : Scheme} (f : X Y) (y : Y) :
    fiber f y X

    f.fiberι y : f.fiber y ⟶ X is the embedding of the scheme-theoretic fiber into X.

    Equations
    Instances For

      The canonical map from the scheme-theoretic fiber to the residue field.

      Equations
      Instances For
        @[reducible]

        The fiber of f at y is naturally a κ(y)-scheme.

        Equations
        Instances For
          theorem AlgebraicGeometry.Scheme.Hom.range_fiberι {X Y : Scheme} (f : X Y) (y : Y) :
          Set.range (fiberι f y) = f ⁻¹' {y}
          def AlgebraicGeometry.Scheme.Hom.fiberHomeo {X Y : Scheme} (f : X Y) (y : Y) :
          (fiber f y) ≃ₜ ↑(f ⁻¹' {y})

          The scheme-theoretic fiber of f at y is homeomorphic to f ⁻¹' {y}.

          Equations
          Instances For
            @[simp]
            theorem AlgebraicGeometry.Scheme.Hom.fiberHomeo_apply {X Y : Scheme} (f : X Y) (y : Y) (x : (fiber f y)) :
            ((fiberHomeo f y) x) = (fiberι f y) x
            @[simp]
            theorem AlgebraicGeometry.Scheme.Hom.fiberι_fiberHomeo_symm {X Y : Scheme} (f : X Y) (y : Y) (x : ↑(f ⁻¹' {y})) :
            (fiberι f y) ((fiberHomeo f y).symm x) = x
            def AlgebraicGeometry.Scheme.Hom.asFiber {X Y : Scheme} (f : X Y) (x : X) :
            (fiber f (f x))

            A point x as a point in the fiber of f at f x.

            Equations
            Instances For
              @[simp]
              theorem AlgebraicGeometry.Scheme.Hom.fiberι_asFiber {X Y : Scheme} (f : X Y) (x : X) :
              (fiberι f (f x)) (asFiber f x) = x
              @[deprecated AlgebraicGeometry.Scheme.Hom.isCompact_preimage_singleton (since := "2026-02-05")]

              Alias of AlgebraicGeometry.Scheme.Hom.isCompact_preimage_singleton.

              @[simp]
              theorem AlgebraicGeometry.Scheme.Hom.asFiberHom_apply {X Y : Scheme} (f : X Y) (x : X) (y : (Spec (X.residueField x))) :
              (asFiberHom f x) y = asFiber f x
              @[simp]
              theorem AlgebraicGeometry.Scheme.Hom.range_asFiberHom {X Y : Scheme} (f : X Y) (x : X) :