Documentation

Mathlib.AlgebraicGeometry.Morphisms.UnderlyingMap

Properties on the underlying functions of morphisms of schemes. #

This file includes various results on properties of morphisms of schemes that come from properties of the underlying map of topological spaces, including

class AlgebraicGeometry.Surjective {X Y : Scheme} (f : X Y) :

A morphism of schemes is surjective if the underlying map is.

Instances
    @[simp]
    theorem AlgebraicGeometry.mem_range_iff_of_surjective {X Y S : Scheme} (f : X S) (g : Y S) (e : X Y) [Surjective e] (hge : CategoryTheory.CategoryStruct.comp e g = f) (s : S) :
    s Set.range f s Set.range g
    theorem AlgebraicGeometry.Surjective.sigmaDesc_of_union_range_eq_univ {X : Scheme} {ι : Type v} [Small.{u, v} ι] {Y : ιScheme} {f : (i : ι) → Y i X} (H : ⋃ (i : ι), Set.range (f i) = Set.univ) :

    The single object covering by one surjective morphism satisfying P.

    Equations
    Instances For
      @[simp]
      theorem AlgebraicGeometry.Scheme.Hom.cover_X {P : CategoryTheory.MorphismProperty Scheme} {X S : Scheme} (f : X S) (hf : P f) [Surjective f] (x✝ : PUnit.{v + 1}) :
      (cover f hf).X x✝ = X
      @[simp]
      theorem AlgebraicGeometry.Scheme.Hom.cover_f {P : CategoryTheory.MorphismProperty Scheme} {X S : Scheme} (f : X S) (hf : P f) [Surjective f] (x✝ : PUnit.{v + 1}) :
      (cover f hf).f x✝ = f
      class AlgebraicGeometry.IsDominant {X Y : Scheme} (f : X Y) :

      A morphism of schemes is dominant if the underlying map has dense range.

      Instances
        @[instance 100]