Order instances on Shrink #
If α : Type v is u-small, we transport various order related
instances on α to Shrink.{u} α.
noncomputable instance
instBotShrink
{α : Type u_1}
[Small.{u, u_1} α]
[Bot α]
:
Bot (Shrink.{u, u_1} α)
Equations
- instBotShrink = { bot := (equivShrink α) ⊥ }
noncomputable instance
instTopShrink
{α : Type u_1}
[Small.{u, u_1} α]
[Top α]
:
Top (Shrink.{u, u_1} α)
Equations
- instTopShrink = { top := (equivShrink α) ⊤ }
@[simp]
@[simp]
@[simp]
@[simp]
Equations
The order isomorphism α ≃o Shrink.{u} α.
Equations
- orderIsoShrink α = { toEquiv := equivShrink α, map_rel_iff' := ⋯ }
Instances For
@[simp]
@[simp]
theorem
orderIsoShrink_symm_apply
{α : Type u_1}
[Small.{u, u_1} α]
[Preorder α]
(a : Shrink.{u, u_1} α)
:
@[simp]
@[simp]
noncomputable instance
instOrderBotShrink
{α : Type u_1}
[Small.{u, u_1} α]
[Preorder α]
[OrderBot α]
:
Equations
- instOrderBotShrink = { toBot := instBotShrink, bot_le := ⋯ }
noncomputable instance
instOrderTopShrink
{α : Type u_1}
[Small.{u, u_1} α]
[Preorder α]
[OrderTop α]
:
Equations
- instOrderTopShrink = { toTop := instTopShrink, le_top := ⋯ }
noncomputable instance
instSuccOrderShrink
{α : Type u_1}
[Small.{u, u_1} α]
[Preorder α]
[SuccOrder α]
:
Equations
noncomputable instance
instPredOrderShrink
{α : Type u_1}
[Small.{u, u_1} α]
[Preorder α]
[PredOrder α]
: