Documentation

Mathlib.Order.Shrink

Order instances on Shrink #

If α : Type v is u-small, we transport various order related instances on α to Shrink.{u} α.

noncomputable instance instBotShrink {α : Type u_1} [Small.{u, u_1} α] [Bot α] :
Equations
noncomputable instance instTopShrink {α : Type u_1} [Small.{u, u_1} α] [Top α] :
Equations
@[simp]
theorem equivShrink_bot {α : Type u_1} [Small.{u, u_1} α] [Bot α] :
@[simp]
theorem equivShrink_top {α : Type u_1} [Small.{u, u_1} α] [Top α] :
@[simp]
theorem equivShrink_symm_bot {α : Type u_1} [Small.{u, u_1} α] [Bot α] :
@[simp]
theorem equivShrink_symm_top {α : Type u_1} [Small.{u, u_1} α] [Top α] :
noncomputable def orderIsoShrink (α : Type u_1) [Small.{u, u_1} α] [Preorder α] :

The order isomorphism α ≃o Shrink.{u} α.

Equations
Instances For
    @[simp]
    theorem orderIsoShrink_apply {α : Type u_1} [Small.{u, u_1} α] [Preorder α] (a : α) :
    @[simp]
    theorem equivShrink_le_equivShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] {x y : α} :
    (equivShrink α) x (equivShrink α) y x y
    @[simp]
    theorem equivShrink_lt_equivShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] {x y : α} :
    (equivShrink α) x < (equivShrink α) y x < y
    noncomputable instance instOrderBotShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] [OrderBot α] :
    Equations
    noncomputable instance instOrderTopShrink {α : Type u_1} [Small.{u, u_1} α] [Preorder α] [OrderTop α] :
    Equations