Ordering #
OrientedCmp cmp
asserts that cmp
is determined by the relation cmp x y = .lt
.
- symm (x y : α) : (cmp x y).swap = cmp y x
The comparator operation is symmetric, in the sense that if
cmp x y
equals.lt
thencmp y x = .gt
and vice versa.
Instances
TransCmp cmp
asserts that cmp
induces a transitive relation.
- le_trans {x y z : α} : cmp x y ≠ Ordering.gt → cmp y z ≠ Ordering.gt → cmp x z ≠ Ordering.gt
The comparator operation is transitive.
Instances
LTCmp cmp
asserts that cmp x y = .lt
and x < y
coincide.
- cmp_iff_lt {x y : α} : cmp x y = Ordering.lt ↔ x < y
cmp x y = .lt
holds iffx < y
is true.
Instances
LECmp cmp
asserts that cmp x y ≠ .gt
and x ≤ y
coincide.
- cmp_iff_le {x y : α} : cmp x y ≠ Ordering.gt ↔ x ≤ y
cmp x y ≠ .gt
holds iffx ≤ y
is true.
Instances
LawfulCmp cmp
asserts that the LE
, LT
, BEq
instances are all coherent with each other
and with cmp
, describing a strict weak order (a linear order except for antisymmetry).
Instances
OrientedOrd α
asserts that the Ord
instance satisfies OrientedCmp
.
Equations
Instances For
Local instance for OrientedOrd lexOrd
.
Local instance for OrientedOrd ord.opposite
.
Local instance for TransOrd ord.opposite
.
Local instance for OrientedOrd (ord.on f)
.
Local instance for TransOrd (ord.on f)
.
Local instance for OrientedOrd (oα.lex oβ)
.
Local instance for TransOrd (oα.lex oβ)
.
Local instance for OrientedOrd (oα.lex' oβ)
.
Local instance for TransOrd (oα.lex' oβ)
.
Pull back a comparator by a function f
, by applying the comparator to both arguments.
Equations
- Ordering.byKey f cmp a b = cmp (f a) (f b)