Equations
Instances For
Equations
- Contradiction φ = ∀ (W : Type) (M : KripkeModel W) (w : W), ¬Evaluate (M, w) φ
Instances For
Equations
- formHasSat = { Satisfiable := fun (ϕ : Formula) => ∃ (W : Type) (M : KripkeModel W) (w : W), Evaluate (M, w) ϕ }
@[simp]
Equations
- SemImpliesSets X Y = ∀ (W : Type) (M : KripkeModel W) (w : W), (∀ φ ∈ X, Evaluate (M, w) φ) → ∀ ψ ∈ Y, Evaluate (M, w) ψ
Instances For
Equations
- modelCanSemImplyForm = { SemImplies := Evaluate }
Equations
- modelCanSemImplySet = { SemImplies := fun (Mw : KripkeModel W × W) (X : Finset Formula) => ∀ f ∈ X, Evaluate Mw f }
Equations
- setCanSemImplySet = { SemImplies := SemImpliesSets }
Equations
- setCanSemImplyForm = { SemImplies := fun (X : Finset Formula) (ψ : Formula) => SemImpliesSets X {ψ} }
Equations
- formCanSemImplySet = { SemImplies := fun (φ : Formula) (X : Finset Formula) => SemImpliesSets {φ} X }
Equations
- formCanSemImplyForm = { SemImplies := fun (φ ψ : Formula) => SemImpliesSets {φ} {ψ} }
Equations
- «term_⊨_» = Lean.ParserDescr.trailingNode `«term_⊨_» 40 40 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "⊨") (Lean.ParserDescr.cat `term 41))
Instances For
Equations
- «term_≡_» = Lean.ParserDescr.trailingNode `«term_≡_» 40 40 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "≡") (Lean.ParserDescr.cat `term 41))
Instances For
Equations
- «term_⊭_» = Lean.ParserDescr.trailingNode `«term_⊭_» 40 40 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "⊭") (Lean.ParserDescr.cat `term 41))
Instances For
theorem
sat_double_neq_invariant
{X : Finset Formula}
(φ : Formula)
:
HasSat.Satisfiable (X ∪ {~~φ}) ↔ HasSat.Satisfiable (X ∪ {φ})