Documentation

Bml.Setsimp

@[simp]
theorem union_singleton_is_insert {X : Finset Formula} {ϕ : Formula} :
X {ϕ} = insert ϕ X
@[simp]
theorem sdiff_singleton_is_erase {X : Finset Formula} {ϕ : Formula} :
X \ {ϕ} = X.erase ϕ
@[simp]
theorem lengthAdd {X : Finset Formula} {ϕ : Formula} :
ϕXlengthOfSet (insert ϕ X) = lengthOfSet X + lengthOfFormula ϕ
@[simp]
theorem lengthRemove (X : Finset Formula) (ϕ : Formula) :
ϕ XlengthOfSet (X.erase ϕ) + lengthOfFormula ϕ = lengthOfSet X
@[simp]
theorem sum_union_le {T : Type u_1} [DecidableEq T] {X Y : Finset T} {F : T} :
(X Y).sum F X.sum F + Y.sum F