Documentation
Init
.
Data
.
Int
.
Pow
Search
return to top
source
Imports
Init.Data.Int.Lemmas
Init.Data.Nat.Lemmas
Imported by
Int
.
pow_zero
Int
.
pow_succ
Int
.
pow_succ'
Int
.
pow_le_pow_of_le_left
Int
.
pow_le_pow_of_le_right
Int
.
pos_pow_of_pos
Int
.
natCast_pow
Int
.
two_pow_pred_sub_two_pow
Int
.
two_pow_pred_sub_two_pow'
pow
#
source
theorem
Int
.
pow_zero
(b :
Int
)
:
b
^
0
=
1
source
theorem
Int
.
pow_succ
(b :
Int
)
(e :
Nat
)
:
b
^
(
e
+
1
)
=
b
^
e
*
b
source
theorem
Int
.
pow_succ'
(b :
Int
)
(e :
Nat
)
:
b
^
(
e
+
1
)
=
b
*
b
^
e
source
theorem
Int
.
pow_le_pow_of_le_left
{n m :
Nat
}
(h :
n
≤
m
)
(i :
Nat
)
:
n
^
i
≤
m
^
i
source
theorem
Int
.
pow_le_pow_of_le_right
{n :
Nat
}
(hx :
n
>
0
)
{i j :
Nat
}
:
i
≤
j
→
n
^
i
≤
n
^
j
source
theorem
Int
.
pos_pow_of_pos
{n :
Nat
}
(m :
Nat
)
(h :
0
<
n
)
:
0
<
n
^
m
source
theorem
Int
.
natCast_pow
(b n :
Nat
)
:
↑
(
b
^
n
)
=
↑
b
^
n
source
@[simp]
theorem
Int
.
two_pow_pred_sub_two_pow
{w :
Nat
}
(h :
0
<
w
)
:
↑
(
2
^
(
w
-
1
)
)
-
↑
(
2
^
w
)
=
-
↑
(
2
^
(
w
-
1
)
)
source
@[simp]
theorem
Int
.
two_pow_pred_sub_two_pow'
{w :
Nat
}
(h :
0
<
w
)
:
2
^
(
w
-
1
)
-
2
^
w
=
-
2
^
(
w
-
1
)