This module provides typeclass instances and lemmas about order-related typeclasses.
Equations
- Std.instTransLeOfIsPreorder = { trans := ⋯ }
instance
Std.instIrreflLtOfIsPreorderOfLawfulOrderLT
{α : Type u}
[LT α]
[LE α]
[IsPreorder α]
[LawfulOrderLT α]
:
instance
Std.instTransLtOfLeOfLawfulOrderLT
{α : Type u}
[LT α]
[LE α]
[Trans (fun (x1 x2 : α) => x1 ≤ x2) (fun (x1 x2 : α) => x1 ≤ x2) fun (x1 x2 : α) => x1 ≤ x2]
[LawfulOrderLT α]
:
Equations
- Std.instTransLtOfLeOfLawfulOrderLT = { trans := ⋯ }
instance
Std.instTransNotLtOfLawfulOrderLTOfTotalOfLe
{α : Type u}
{x✝ : LT α}
[LE α]
[LawfulOrderLT α]
[Total fun (x1 x2 : α) => x1 ≤ x2]
[Trans (fun (x1 x2 : α) => x1 ≤ x2) (fun (x1 x2 : α) => x1 ≤ x2) fun (x1 x2 : α) => x1 ≤ x2]
:
Equations
- Std.instTransNotLtOfLawfulOrderLTOfTotalOfLe = { trans := ⋯ }
instance
Std.instEquivBEqOfLawfulOrderBEqOfIsPreorder
{α : Type u}
[BEq α]
[LE α]
[LawfulOrderBEq α]
[IsPreorder α]
:
EquivBEq α
instance
Std.instLawfulBEqOfLawfulOrderBEqOfIsPartialOrder
{α : Type u}
[BEq α]
[LE α]
[LawfulOrderBEq α]
[IsPartialOrder α]
:
theorem
Std.min_le_left
{α : Type u}
[Min α]
[LE α]
[Refl fun (x1 x2 : α) => x1 ≤ x2]
[LawfulOrderInf α]
{a b : α}
:
theorem
Std.min_le_right
{α : Type u}
[Min α]
[LE α]
[Refl fun (x1 x2 : α) => x1 ≤ x2]
[LawfulOrderInf α]
{a b : α}
:
instance
Std.instMinEqOrOfIsLinearOrderOfLawfulOrderInf
{α : Type u}
[LE α]
[Min α]
[IsLinearOrder α]
[LawfulOrderInf α]
:
MinEqOr α
theorem
Std.IsLinearOrder.of_refl_of_antisymm_of_lawfulOrderMin
{α : Type u}
[LE α]
[LE α]
[Min α]
[Refl fun (x1 x2 : α) => x1 ≤ x2]
[Antisymm fun (x1 x2 : α) => x1 ≤ x2]
[LawfulOrderMin α]
:
If a Min α
instance satisfies typical properties in terms of a reflexive and antisymmetric LE α
instance, then the LE α
instance represents a linear order.
instance
Std.instAssociativeMinOfIsLinearOrderOfLawfulOrderMin
{α : Type u}
[LE α]
[Min α]
[IsLinearOrder α]
[LawfulOrderMin α]
:
theorem
Std.min_eq_if
{α : Type u}
[LE α]
[DecidableLE α]
{x✝ : Min α}
[LawfulOrderLeftLeaningMin α]
{a b : α}
:
theorem
Std.max_eq_if
{α : Type u}
[LE α]
[DecidableLE α]
{x✝ : Max α}
[LawfulOrderLeftLeaningMax α]
{a b : α}
:
instance
Std.instLawfulOrderLeftLeaningMinOfIsLinearOrderOfLawfulOrderInf
{α : Type u}
[LE α]
[Min α]
[IsLinearOrder α]
[LawfulOrderInf α]
:
instance
Std.instMinEqOrOfLawfulOrderLeftLeaningMin
{α : Type u}
[LE α]
[Min α]
[LawfulOrderLeftLeaningMin α]
:
MinEqOr α
instance
Std.instLawfulOrderMinOfIsLinearPreorderOfLawfulOrderLeftLeaningMin
{α : Type u}
[LE α]
[Min α]
[IsLinearPreorder α]
[LawfulOrderLeftLeaningMin α]
:
Equations
Instances For
theorem
Std.left_le_max
{α : Type u}
[Max α]
[LE α]
[Refl fun (x1 x2 : α) => x1 ≤ x2]
[LawfulOrderSup α]
{a b : α}
:
theorem
Std.right_le_max
{α : Type u}
[Max α]
[LE α]
[Refl fun (x1 x2 : α) => x1 ≤ x2]
[LawfulOrderSup α]
{a b : α}
:
instance
Std.instMaxEqOrOfIsLinearOrderOfLawfulOrderSup
{α : Type u}
[LE α]
[Max α]
[IsLinearOrder α]
[LawfulOrderSup α]
:
MaxEqOr α
theorem
Std.IsLinearOrder.of_refl_of_antisymm_of_lawfulOrderMax
{α : Type u}
[LE α]
[Max α]
[Refl fun (x1 x2 : α) => x1 ≤ x2]
[Antisymm fun (x1 x2 : α) => x1 ≤ x2]
[LawfulOrderMax α]
:
If a Max α
instance satisfies typical properties in terms of a reflexive and antisymmetric LE α
instance, then the LE α
instance represents a linear order.
instance
Std.instAssociativeMaxOfIsLinearOrderOfLawfulOrderMax
{α : Type u}
[LE α]
[Max α]
[IsLinearOrder α]
[LawfulOrderMax α]
:
instance
Std.instLawfulOrderLeftLeaningMaxOfIsLinearOrderOfLawfulOrderSup
{α : Type u}
[LE α]
[Max α]
[IsLinearOrder α]
[LawfulOrderSup α]
:
instance
Std.instMaxEqOrOfLawfulOrderLeftLeaningMax
{α : Type u}
[LE α]
[Max α]
[LawfulOrderLeftLeaningMax α]
:
MaxEqOr α
instance
Std.instLawfulOrderMaxOfIsLinearPreorderOfLawfulOrderLeftLeaningMax
{α : Type u}
[LE α]
[Max α]
[IsLinearPreorder α]
[LawfulOrderLeftLeaningMax α]
: