Documentation

Init.Data.Rat.Lemmas

Lemmas about the Rational Numbers #

theorem Rat.ext {p q : Rat} :
p.num = q.nump.den = q.denp = q
@[simp]
theorem Rat.mk_den_one {r : Int} :
{ num := r, den_nz := Nat.one_ne_zero, reduced := } = r
@[simp]
theorem Rat.zero_num :
num 0 = 0
@[simp]
theorem Rat.zero_den :
den 0 = 1
@[simp]
theorem Rat.one_num :
num 1 = 1
@[simp]
theorem Rat.one_den :
den 1 = 1
@[simp]
theorem Rat.maybeNormalize_eq {num : Int} {den g : Nat} (dvd_num : g num) (dvd_den : g den) (den_nz : den / g 0) (reduced : (num / g).natAbs.Coprime (den / g)) :
maybeNormalize num den g dvd_num dvd_den den_nz reduced = { num := num.divExact (↑g) dvd_num, den := den / g, den_nz := den_nz, reduced := reduced }
theorem Rat.normalize_eq {num : Int} {den : Nat} (den_nz : den 0) :
normalize num den den_nz = { num := num / (num.natAbs.gcd den), den := den / num.natAbs.gcd den, den_nz := , reduced := }
@[simp]
theorem Rat.num_normalize {num : Int} {den : Nat} (den_nz : den 0) :
(normalize num den den_nz).num = num / (num.natAbs.gcd den)
@[simp]
theorem Rat.den_normalize {num : Int} {den : Nat} (den_nz : den 0) :
(normalize num den den_nz).den = den / num.natAbs.gcd den
@[simp]
theorem Rat.normalize_zero {d : Nat} (nz : d 0) :
normalize 0 d nz = 0
theorem Rat.mk_eq_normalize (num : Int) (den : Nat) (nz : den 0) (c : num.natAbs.Coprime den) :
{ num := num, den := den, den_nz := nz, reduced := c } = normalize num den nz
theorem Rat.normalize_eq_mk' (n : Int) (d : Nat) (h : d 0) (c : n.natAbs.gcd d = 1) :
normalize n d h = { num := n, den := d, den_nz := h, reduced := c }
theorem Rat.normalize_self (r : Rat) :
normalize r.num r.den = r
theorem Rat.normalize_mul_left {d : Nat} {n : Int} {a : Nat} (d0 : d 0) (a0 : a 0) :
normalize (a * n) (a * d) = normalize n d d0
theorem Rat.normalize_mul_right {d : Nat} {n : Int} {a : Nat} (d0 : d 0) (a0 : a 0) :
normalize (n * a) (d * a) = normalize n d d0
theorem Rat.normalize_eq_iff {d₁ d₂ : Nat} {n₁ n₂ : Int} (z₁ : d₁ 0) (z₂ : d₂ 0) :
normalize n₁ d₁ z₁ = normalize n₂ d₂ z₂ n₁ * d₂ = n₂ * d₁
theorem Rat.maybeNormalize_eq_normalize {num : Int} {den g : Nat} (dvd_num : g num) (dvd_den : g den) (den_nz : den / g 0) (reduced : (num / g).natAbs.Coprime (den / g)) (hn : g num) (hd : g den) :
maybeNormalize num den g dvd_num dvd_den den_nz reduced = normalize num den
@[simp]
theorem Rat.normalize_eq_zero {d : Nat} {n : Int} (d0 : d 0) :
normalize n d d0 = 0 n = 0
theorem Rat.normalize_num_den' (num : Int) (den : Nat) (nz : den 0) :
(d : Nat), d 0 num = (normalize num den nz).num * d den = (normalize num den nz).den * d
theorem Rat.normalize_num_den {n : Int} {d : Nat} {z : d 0} {n' : Int} {d' : Nat} {z' : d' 0} {c : n'.natAbs.Coprime d'} (h : normalize n d z = { num := n', den := d', den_nz := z', reduced := c }) :
(m : Nat), m 0 n = n' * m d = d' * m
theorem Rat.normalize_eq_mkRat {num : Int} {den : Nat} (den_nz : den 0) :
normalize num den den_nz = mkRat num den
theorem Rat.mkRat_num_den {d : Nat} {n n' : Int} {d' : Nat} {z' : d' 0} {c : n'.natAbs.Coprime d'} (z : d 0) (h : mkRat n d = { num := n', den := d', den_nz := z', reduced := c }) :
(m : Nat), m 0 n = n' * m d = d' * m
theorem Rat.mkRat_def (n : Int) (d : Nat) :
mkRat n d = if d0 : d = 0 then 0 else normalize n d d0
theorem Rat.num_mkRat (n : Int) (d : Nat) :
(mkRat n d).num = if d = 0 then 0 else n / (d.gcd n.natAbs)
theorem Rat.den_mkRat (n : Int) (d : Nat) :
(mkRat n d).den = if d = 0 then 1 else d / d.gcd n.natAbs
@[simp]
theorem Rat.mkRat_self (a : Rat) :
mkRat a.num a.den = a
theorem Rat.mk_eq_mkRat (num : Int) (den : Nat) (nz : den 0) (c : num.natAbs.Coprime den) :
{ num := num, den := den, den_nz := nz, reduced := c } = mkRat num den
@[simp]
theorem Rat.zero_mkRat (n : Nat) :
mkRat 0 n = 0
@[simp]
theorem Rat.mkRat_zero (n : Int) :
mkRat n 0 = 0
theorem Rat.mkRat_eq_zero {d : Nat} {n : Int} (d0 : d 0) :
mkRat n d = 0 n = 0
theorem Rat.mkRat_ne_zero {d : Nat} {n : Int} (d0 : d 0) :
mkRat n d 0 n 0
theorem Rat.mkRat_mul_left {n : Int} {d a : Nat} (a0 : a 0) :
mkRat (a * n) (a * d) = mkRat n d
theorem Rat.mkRat_mul_right {n : Int} {d a : Nat} (a0 : a 0) :
mkRat (n * a) (d * a) = mkRat n d
theorem Rat.mkRat_eq_iff {d₁ d₂ : Nat} {n₁ n₂ : Int} (z₁ : d₁ 0) (z₂ : d₂ 0) :
mkRat n₁ d₁ = mkRat n₂ d₂ n₁ * d₂ = n₂ * d₁
@[simp]
theorem Rat.divInt_ofNat (num : Int) (den : Nat) :
divInt num den = mkRat num den
theorem Rat.mk_eq_divInt (num : Int) (den : Nat) (nz : den 0) (c : num.natAbs.Coprime den) :
{ num := num, den := den, den_nz := nz, reduced := c } = divInt num den
theorem Rat.num_divInt_den (a : Rat) :
divInt a.num a.den = a
theorem Rat.mk'_eq_divInt {n : Int} {d : Nat} {h : d 0} {c : n.natAbs.Coprime d} :
{ num := n, den := d, den_nz := h, reduced := c } = divInt n d
@[reducible, inline, deprecated Rat.num_divInt_den (since := "2025-08-22")]
abbrev Rat.divInt_self (a : Rat) :
divInt a.num a.den = a
Equations
Instances For
    @[simp]
    theorem Rat.zero_divInt (n : Int) :
    divInt 0 n = 0
    @[simp]
    theorem Rat.divInt_zero (n : Int) :
    divInt n 0 = 0
    theorem Rat.neg_divInt_neg (num den : Int) :
    divInt (-num) (-den) = divInt num den
    theorem Rat.divInt_neg' (num den : Int) :
    divInt num (-den) = divInt (-num) den
    theorem Rat.divInt_eq_divInt_iff {d₁ d₂ n₁ n₂ : Int} (z₁ : d₁ 0) (z₂ : d₂ 0) :
    divInt n₁ d₁ = divInt n₂ d₂ n₁ * d₂ = n₂ * d₁
    @[reducible, inline, deprecated Rat.divInt_eq_divInt_iff (since := "2025-08-22")]
    abbrev Rat.divInt_eq_iff {d₁ d₂ n₁ n₂ : Int} (z₁ : d₁ 0) (z₂ : d₂ 0) :
    divInt n₁ d₁ = divInt n₂ d₂ n₁ * d₂ = n₂ * d₁
    Equations
    Instances For
      theorem Rat.divInt_mul_left {n d a : Int} (a0 : a 0) :
      divInt (a * n) (a * d) = divInt n d
      theorem Rat.divInt_mul_right {n d a : Int} (a0 : a 0) :
      divInt (n * a) (d * a) = divInt n d
      theorem Rat.divInt_self' {n : Int} (hn : n 0) :
      divInt n n = 1
      theorem Rat.divInt_num_den {d n n' : Int} {d' : Nat} {z' : d' 0} {c : n'.natAbs.Coprime d'} (z : d 0) (h : divInt n d = { num := n', den := d', den_nz := z', reduced := c }) :
      (m : Int), m 0 n = n' * m d = d' * m
      theorem Rat.num_divInt (a b : Int) :
      (divInt a b).num = b.sign * a / (b.gcd a)
      theorem Rat.den_divInt (a b : Int) :
      (divInt a b).den = if b = 0 then 1 else b.natAbs / b.gcd a
      def Rat.numDenCasesOn {C : RatSort u} (a : Rat) :
      ((n : Int) → (d : Nat) → 0 < dn.natAbs.Coprime dC (divInt n d))C a

      Define a (dependent) function or prove ∀ r : Rat, p r by dealing with rational numbers of the form n /. d with 0 < d and coprime n, d.

      Equations
      • { num := n, den := d, den_nz := h, reduced := c }.numDenCasesOn x✝ = .mpr (x✝ n d c)
      Instances For
        def Rat.numDenCasesOn' {C : RatSort u} (a : Rat) (H : (n : Int) → (d : Nat) → d 0C (divInt n d)) :
        C a

        Define a (dependent) function or prove ∀ r : Rat, p r by dealing with rational numbers of the form n /. d with d ≠ 0.

        Equations
        Instances For
          def Rat.numDenCasesOn'' {C : RatSort u} (a : Rat) (H : (n : Int) → (d : Nat) → (nz : d 0) → (red : n.natAbs.Coprime d) → C { num := n, den := d, den_nz := nz, reduced := red }) :
          C a

          Define a (dependent) function or prove ∀ r : Rat, p r by dealing with rational numbers of the form mk' n d with d ≠ 0.

          Equations
          Instances For
            @[simp]
            theorem Rat.ofInt_num {n : Int} :
            (ofInt n).num = n
            @[simp]
            theorem Rat.ofInt_den {n : Int} :
            (ofInt n).den = 1
            @[simp]
            @[simp]
            theorem Rat.den_ofNat {n : Nat} :
            @[simp]
            theorem Rat.num_natCast (n : Nat) :
            (↑n).num = n
            @[simp]
            theorem Rat.den_natCast (n : Nat) :
            (↑n).den = 1
            @[reducible, inline, deprecated Rat.num_ofNat (since := "2025-08-22")]
            Equations
            Instances For
              @[reducible, inline, deprecated Rat.den_ofNat (since := "2025-08-22")]
              abbrev Rat.ofNat_den {n : Nat} :
              Equations
              Instances For
                theorem Rat.add_def (a b : Rat) :
                a + b = normalize (a.num * b.den + b.num * a.den) (a.den * b.den)
                theorem Rat.add_def' (a b : Rat) :
                a + b = mkRat (a.num * b.den + b.num * a.den) (a.den * b.den)
                theorem Rat.add_zero (a : Rat) :
                a + 0 = a
                theorem Rat.zero_add (a : Rat) :
                0 + a = a
                theorem Rat.normalize_add_normalize (n₁ n₂ : Int) {d₁ d₂ : Nat} (z₁ : d₁ 0) (z₂ : d₂ 0) :
                normalize n₁ d₁ z₁ + normalize n₂ d₂ z₂ = normalize (n₁ * d₂ + n₂ * d₁) (d₁ * d₂)
                theorem Rat.mkRat_add_mkRat (n₁ n₂ : Int) {d₁ d₂ : Nat} (z₁ : d₁ 0) (z₂ : d₂ 0) :
                mkRat n₁ d₁ + mkRat n₂ d₂ = mkRat (n₁ * d₂ + n₂ * d₁) (d₁ * d₂)
                @[simp]
                theorem Rat.divInt_add_divInt (n₁ n₂ : Int) {d₁ d₂ : Int} (z₁ : d₁ 0) (z₂ : d₂ 0) :
                divInt n₁ d₁ + divInt n₂ d₂ = divInt (n₁ * d₂ + n₂ * d₁) (d₁ * d₂)
                theorem Rat.add_comm (a b : Rat) :
                a + b = b + a
                theorem Rat.add_assoc (a b c : Rat) :
                a + b + c = a + (b + c)
                theorem Rat.add_left_comm (a b c : Rat) :
                a + (b + c) = b + (a + c)
                @[simp]
                theorem Rat.neg_num (a : Rat) :
                (-a).num = -a.num
                @[simp]
                theorem Rat.neg_den (a : Rat) :
                (-a).den = a.den
                theorem Rat.neg_normalize (n : Int) (d : Nat) (z : d 0) :
                -normalize n d z = normalize (-n) d z
                theorem Rat.neg_mkRat (n : Int) (d : Nat) :
                -mkRat n d = mkRat (-n) d
                @[simp]
                theorem Rat.neg_divInt (n d : Int) :
                -divInt n d = divInt (-n) d
                theorem Rat.neg_add_cancel (a : Rat) :
                -a + a = 0
                theorem Rat.add_neg_cancel (a : Rat) :
                a + -a = 0
                theorem Rat.add_right_cancel {a b : Rat} (c : Rat) (h : a + c = b + c) :
                a = b
                theorem Rat.sub_def (a b : Rat) :
                a - b = normalize (a.num * b.den - b.num * a.den) (a.den * b.den)
                theorem Rat.sub_def' (a b : Rat) :
                a - b = mkRat (a.num * b.den - b.num * a.den) (a.den * b.den)
                theorem Rat.sub_eq_add_neg (a b : Rat) :
                a - b = a + -b
                theorem Rat.neg_sub (a b : Rat) :
                -(a - b) = b - a
                @[simp]
                theorem Rat.divInt_sub_divInt (n₁ n₂ : Int) {d₁ d₂ : Int} (z₁ : d₁ 0) (z₂ : d₂ 0) :
                divInt n₁ d₁ - divInt n₂ d₂ = divInt (n₁ * d₂ - n₂ * d₁) (d₁ * d₂)
                theorem Rat.mul_def (a b : Rat) :
                a * b = normalize (a.num * b.num) (a.den * b.den)
                theorem Rat.mul_def' (a b : Rat) :
                a * b = mkRat (a.num * b.num) (a.den * b.den)
                theorem Rat.mul_comm (a b : Rat) :
                a * b = b * a
                @[simp]
                theorem Rat.zero_mul (a : Rat) :
                0 * a = 0
                @[simp]
                theorem Rat.mul_zero (a : Rat) :
                a * 0 = 0
                @[simp]
                theorem Rat.one_mul (a : Rat) :
                1 * a = a
                @[simp]
                theorem Rat.mul_one (a : Rat) :
                a * 1 = a
                theorem Rat.normalize_mul_normalize (n₁ n₂ : Int) {d₁ d₂ : Nat} (z₁ : d₁ 0) (z₂ : d₂ 0) :
                normalize n₁ d₁ z₁ * normalize n₂ d₂ z₂ = normalize (n₁ * n₂) (d₁ * d₂)
                @[simp]
                theorem Rat.mkRat_mul_mkRat (n₁ n₂ : Int) (d₁ d₂ : Nat) :
                mkRat n₁ d₁ * mkRat n₂ d₂ = mkRat (n₁ * n₂) (d₁ * d₂)
                theorem Rat.divInt_mul_divInt (n₁ n₂ : Int) {d₁ d₂ : Int} :
                divInt n₁ d₁ * divInt n₂ d₂ = divInt (n₁ * n₂) (d₁ * d₂)
                theorem Rat.mul_assoc (a b c : Rat) :
                a * b * c = a * (b * c)
                theorem Rat.add_mul (a b c : Rat) :
                (a + b) * c = a * c + b * c
                theorem Rat.mul_add (a b c : Rat) :
                a * (b + c) = a * b + a * c
                theorem Rat.neg_mul (a b : Rat) :
                -a * b = -(a * b)
                theorem Rat.mul_neg (a b : Rat) :
                a * -b = -(a * b)
                theorem Rat.inv_def (a : Rat) :
                a⁻¹ = divInt (↑a.den) a.num
                @[simp]
                theorem Rat.num_inv (a : Rat) :
                a⁻¹.num = a.num.sign * a.den
                @[simp]
                theorem Rat.den_inv (a : Rat) :
                @[simp]
                theorem Rat.inv_zero :
                0⁻¹ = 0
                @[simp]
                theorem Rat.inv_divInt (n d : Int) :
                (divInt n d)⁻¹ = divInt d n
                theorem Rat.mul_inv_cancel (a : Rat) :
                a 0a * a⁻¹ = 1
                theorem Rat.inv_mul_cancel (a : Rat) (h : a 0) :
                a⁻¹ * a = 1
                theorem Rat.inv_eq_of_mul_eq_one {a b : Rat} (h : a * b = 1) :
                a⁻¹ = b
                theorem Rat.inv_inv (a : Rat) :
                theorem Rat.inv_mul_rev (a b : Rat) :
                (a * b)⁻¹ = b⁻¹ * a⁻¹
                theorem Rat.mul_eq_zero {a b : Rat} :
                a * b = 0 a = 0 b = 0
                theorem Rat.div_def (a b : Rat) :
                a / b = a * b⁻¹
                theorem Rat.divInt_eq_div (a b : Int) :
                divInt a b = a / b
                theorem Rat.mkRat_eq_div (a : Int) (b : Nat) :
                mkRat a b = a / b
                theorem Rat.div_mul_cancel {a b : Rat} (hb : b 0) :
                a / b * b = a
                theorem Rat.mul_div_cancel {a b : Rat} (hb : b 0) :
                a * b / b = a
                theorem Rat.pow_def (q : Rat) (n : Nat) :
                q ^ n = { num := q.num ^ n, den := q.den ^ n, den_nz := , reduced := }
                @[simp]
                theorem Rat.num_pow (q : Rat) (n : Nat) :
                (q ^ n).num = q.num ^ n
                @[simp]
                theorem Rat.den_pow (q : Rat) (n : Nat) :
                (q ^ n).den = q.den ^ n
                @[simp]
                theorem Rat.pow_zero (q : Rat) :
                q ^ 0 = 1
                theorem Rat.pow_succ (q : Rat) (n : Nat) :
                q ^ (n + 1) = q ^ n * q
                @[simp]
                theorem Rat.pow_one (q : Rat) :
                q ^ 1 = q
                @[simp]
                theorem Rat.zpow_zero (q : Rat) :
                q ^ 0 = 1
                @[simp]
                theorem Rat.zpow_one (q : Rat) :
                q ^ 1 = q
                theorem Rat.zpow_natCast (q : Rat) (n : Nat) :
                q ^ n = q ^ n
                theorem Rat.zpow_neg (q : Rat) (n : Int) :
                q ^ (-n) = (q ^ n)⁻¹
                theorem Rat.zpow_add_one {q : Rat} (hq : q 0) (m : Int) :
                q ^ (m + 1) = q ^ m * q
                theorem Rat.zpow_sub_one {q : Rat} (hq : q 0) (m : Int) :
                q ^ (m - 1) = q ^ m * q⁻¹
                theorem Rat.zpow_add {q : Rat} (hq : q 0) (m n : Int) :
                q ^ (m + n) = q ^ m * q ^ n

                ofScientific #

                theorem Rat.ofScientific_true_def {m e : Nat} :
                Rat.ofScientific m true e = mkRat (↑m) (10 ^ e)
                theorem Rat.ofScientific_def {m : Nat} {s : Bool} {e : Nat} :
                Rat.ofScientific m s e = if s = true then mkRat (↑m) (10 ^ e) else ↑(m * 10 ^ e)
                @[simp]

                Rat.ofScientific applied to numeric literals is the same as a scientific literal.

                and < #

                @[simp]
                theorem Rat.num_nonneg {q : Rat} :
                0 q.num 0 q
                @[simp]
                theorem Rat.num_eq_zero {q : Rat} :
                q.num = 0 q = 0
                theorem Rat.nonneg_antisymm {q : Rat} :
                0 q0 -qq = 0
                theorem Rat.nonneg_total (a : Rat) :
                0 a 0 -a
                @[simp]
                theorem Rat.divInt_nonneg_iff_of_pos_right {a b : Int} (hb : 0 < b) :
                0 divInt a b 0 a
                @[simp]
                theorem Rat.divInt_nonneg {a b : Int} (ha : 0 a) (hb : 0 b) :
                0 divInt a b
                theorem Rat.add_nonneg {a b : Rat} :
                0 a0 b0 a + b
                theorem Rat.mul_nonneg {a b : Rat} :
                0 a0 b0 a * b
                theorem Rat.not_le {a b : Rat} :
                ¬a b b < a
                theorem Rat.not_lt {a b : Rat} :
                ¬a < b b a
                theorem Rat.lt_iff (a b : Rat) :
                a < b a.num * b.den < b.num * a.den
                theorem Rat.le_iff (a b : Rat) :
                a b a.num * b.den b.num * a.den
                theorem Rat.le_iff_sub_nonneg (a b : Rat) :
                a b 0 b - a
                theorem Rat.le_total {a b : Rat} :
                a b b a
                theorem Rat.le_refl {a : Rat} :
                a a
                theorem Rat.le_trans {a b c : Rat} (hab : a b) (hbc : b c) :
                a c
                theorem Rat.le_antisymm {a b : Rat} (hab : a b) (hba : b a) :
                a = b
                theorem Rat.le_of_lt {a b : Rat} (ha : a < b) :
                a b
                @[simp]
                theorem Rat.lt_irrefl {a : Rat} :
                ¬a < a
                theorem Rat.ne_of_lt {a b : Rat} (ha : a < b) :
                a b
                theorem Rat.ne_of_gt {a b : Rat} (ha : a < b) :
                b a
                theorem Rat.lt_of_le_of_ne {a b : Rat} (ha : a b) (hb : a b) :
                a < b
                theorem Rat.add_le_add_left {a b c : Rat} :
                c + a c + b a b
                theorem Rat.add_le_add_right {a b c : Rat} :
                a + c b + c a b
                theorem Rat.lt_iff_sub_pos (a b : Rat) :
                a < b 0 < b - a
                theorem Rat.mul_pos {a b : Rat} (ha : 0 < a) (hb : 0 < b) :
                0 < a * b
                theorem Rat.mul_le_mul_of_nonneg_left {a b c : Rat} (ha : a b) (hc : 0 c) :
                c * a c * b
                theorem Rat.mul_le_mul_of_nonneg_right {a b c : Rat} (ha : a b) (hc : 0 c) :
                a * c b * c
                theorem Rat.mul_lt_mul_of_pos_left {a b c : Rat} (ha : a < b) (hc : 0 < c) :
                c * a < c * b
                theorem Rat.mul_lt_mul_of_pos_right {a b c : Rat} (ha : a < b) (hc : 0 < c) :
                a * c < b * c
                theorem Rat.le_of_mul_le_mul_left {a b c : Rat} (ha : c * a c * b) (hc : 0 < c) :
                a b
                theorem Rat.le_of_mul_le_mul_right {a b c : Rat} (ha : a * c b * c) (hc : 0 < c) :
                a b
                theorem Rat.lt_of_mul_lt_mul_left {a b c : Rat} (h : c * a < c * b) (hc : 0 c) :
                a < b
                theorem Rat.lt_of_mul_lt_mul_right {a b c : Rat} (h : a * c < b * c) (hc : 0 c) :
                a < b
                theorem Rat.mul_lt_mul_left {a b c : Rat} (hc : 0 < c) :
                c * a < c * b a < b
                theorem Rat.mul_lt_mul_right {a b c : Rat} (hc : 0 < c) :
                a * c < b * c a < b
                theorem Rat.mul_pos_iff_of_pos_left {a b : Rat} (ha : 0 < a) :
                0 < a * b 0 < b
                theorem Rat.mul_pos_iff_of_pos_right {a b : Rat} (hb : 0 < b) :
                0 < a * b 0 < a
                theorem Rat.mul_neg_iff_of_pos_left {a b : Rat} (ha : 0 < a) :
                a * b < 0 b < 0
                theorem Rat.mul_neg_iff_of_pos_right {a b : Rat} (hb : 0 < b) :
                a * b < 0 a < 0
                theorem Rat.inv_pos {a : Rat} :
                0 < a⁻¹ 0 < a
                theorem Rat.pow_pos {a : Rat} {n : Nat} (h : 0 < a) :
                0 < a ^ n
                theorem Rat.pow_nonneg {a : Rat} {n : Nat} (h : 0 a) :
                0 a ^ n
                theorem Rat.zpow_pos {a : Rat} {n : Int} (h : 0 < a) :
                0 < a ^ n
                theorem Rat.zpow_nonneg {a : Rat} {n : Int} (h : 0 a) :
                0 a ^ n
                theorem Rat.div_lt_iff {a b c : Rat} (hb : 0 < b) :
                a / b < c a < c * b
                theorem Rat.div_lt_iff' {a b c : Rat} (hb : 0 < b) :
                a / b < c a < b * c
                theorem Rat.lt_div_iff {a b c : Rat} (hc : 0 < c) :
                a < b / c a * c < b
                theorem Rat.lt_div_iff' {a b c : Rat} (hc : 0 < c) :
                a < b / c c * a < b

                intCast #

                @[simp]
                theorem Rat.den_intCast (a : Int) :
                (↑a).den = 1
                @[simp]
                theorem Rat.num_intCast (a : Int) :
                (↑a).num = a
                @[reducible, inline, deprecated Rat.den_intCast (since := "2025-08-22")]
                abbrev Rat.intCast_den (a : Int) :
                (↑a).den = 1
                Equations
                Instances For
                  @[reducible, inline, deprecated Rat.num_intCast (since := "2025-08-22")]
                  abbrev Rat.intCast_num (a : Int) :
                  (↑a).num = a
                  Equations
                  Instances For

                    The following lemmas are later subsumed by e.g. Int.cast_add and Int.cast_mul in Mathlib but it is convenient to have these earlier, for users who only need Int and Rat.

                    theorem Rat.intCast_natCast (n : Nat) :
                    n = n
                    @[simp]
                    theorem Rat.intCast_inj {a b : Int} :
                    a = b a = b
                    @[simp]
                    theorem Rat.natCast_inj {a b : Nat} :
                    a = b a = b
                    @[simp]
                    theorem Rat.intCast_eq_zero_iff {a : Int} :
                    a = 0 a = 0
                    @[simp]
                    theorem Rat.natCast_eq_zero_iff {a : Nat} :
                    a = 0 a = 0
                    @[simp]
                    @[simp]
                    @[simp]
                    theorem Rat.intCast_zero :
                    0 = 0
                    theorem Rat.intCast_one :
                    1 = 1
                    @[simp]
                    theorem Rat.intCast_add (a b : Int) :
                    ↑(a + b) = a + b
                    @[simp]
                    theorem Rat.natCast_add (a b : Nat) :
                    ↑(a + b) = a + b
                    @[simp]
                    theorem Rat.intCast_neg (a : Int) :
                    ↑(-a) = -a
                    @[simp]
                    theorem Rat.intCast_sub (a b : Int) :
                    ↑(a - b) = a - b
                    @[simp]
                    theorem Rat.intCast_mul (a b : Int) :
                    ↑(a * b) = a * b
                    @[simp]
                    theorem Rat.natCast_mul (a b : Nat) :
                    ↑(a * b) = a * b
                    @[simp]
                    theorem Rat.intCast_pow (a : Int) (n : Nat) :
                    ↑(a ^ n) = a ^ n
                    @[simp]
                    theorem Rat.natCast_pow (a b : Nat) :
                    ↑(a ^ b) = a ^ b
                    theorem Rat.intCast_le_intCast {a b : Int} :
                    a b a b
                    theorem Rat.intCast_lt_intCast {a b : Int} :
                    a < b a < b
                    theorem Rat.natCast_le_natCast {a b : Nat} :
                    a b a b
                    theorem Rat.natCast_lt_natCast {a b : Nat} :
                    a < b a < b
                    theorem Rat.intCast_nonneg {a : Int} :
                    0 a 0 a
                    theorem Rat.natCast_nonneg {a : Nat} :
                    0 a
                    theorem Rat.intCast_pos {a : Int} :
                    0 < a 0 < a
                    theorem Rat.natCast_pos {a : Nat} :
                    0 < a 0 < a
                    theorem Rat.intCast_nonpos {a : Int} :
                    a 0 a 0
                    theorem Rat.intCast_neg_iff {a : Int} :
                    a < 0 a < 0
                    theorem Rat.floor_def (a : Rat) :
                    a.floor = a.num / a.den
                    @[simp]
                    theorem Rat.floor_intCast (a : Int) :
                    (↑a).floor = a
                    theorem Rat.floor_monotone {a b : Rat} (h : a b) :
                    theorem Rat.floor_le (a : Rat) :
                    a.floor a
                    theorem Rat.lt_floor_add_one (a : Rat) :
                    a < ↑(a.floor + 1)
                    theorem Rat.le_floor_iff {x : Int} {a : Rat} :
                    x a.floor x a
                    theorem Rat.floor_lt_iff {a : Rat} {x : Int} :
                    a.floor < x a < x
                    @[simp]
                    theorem Rat.ceil_intCast (a : Int) :
                    (↑a).ceil = a