Documentation
Init
.
Data
.
String
.
Lemmas
Search
return to top
source
Imports
Init.Data.Char.Lemmas
Init.Data.List.Lex
Imported by
String
.
data_eq_of_eq
String
.
ne_of_data_ne
String
.
not_le
String
.
not_lt
String
.
le_refl
String
.
lt_irrefl
String
.
le_trans
String
.
lt_trans
String
.
le_total
String
.
le_antisymm
String
.
lt_asymm
String
.
ne_of_lt
String
.
ltIrrefl
String
.
leRefl
String
.
leTrans
String
.
leAntisymm
String
.
ltAsymm
String
.
leTotal
source
theorem
String
.
data_eq_of_eq
{a b :
String
}
(h :
a
=
b
)
:
a
.data
=
b
.data
source
theorem
String
.
ne_of_data_ne
{a b :
String
}
(h :
a
.data
≠
b
.data
)
:
a
≠
b
source
@[simp]
theorem
String
.
not_le
{a b :
String
}
:
¬
a
≤
b
↔
b
<
a
source
@[simp]
theorem
String
.
not_lt
{a b :
String
}
:
¬
a
<
b
↔
b
≤
a
source
@[simp]
theorem
String
.
le_refl
(a :
String
)
:
a
≤
a
source
@[simp]
theorem
String
.
lt_irrefl
(a :
String
)
:
¬
a
<
a
source
theorem
String
.
le_trans
{a b c :
String
}
:
a
≤
b
→
b
≤
c
→
a
≤
c
source
theorem
String
.
lt_trans
{a b c :
String
}
:
a
<
b
→
b
<
c
→
a
<
c
source
theorem
String
.
le_total
(a b :
String
)
:
a
≤
b
∨
b
≤
a
source
theorem
String
.
le_antisymm
{a b :
String
}
:
a
≤
b
→
b
≤
a
→
a
=
b
source
theorem
String
.
lt_asymm
{a b :
String
}
(h :
a
<
b
)
:
¬
b
<
a
source
theorem
String
.
ne_of_lt
{a b :
String
}
(h :
a
<
b
)
:
a
≠
b
source
instance
String
.
ltIrrefl
:
Std.Irrefl
fun (
x1
x2
:
Char
) =>
x1
<
x2
source
instance
String
.
leRefl
:
Std.Refl
fun (
x1
x2
:
Char
) =>
x1
≤
x2
source
instance
String
.
leTrans
:
Trans
(fun (
x1
x2
:
Char
) =>
x1
≤
x2
)
(fun (
x1
x2
:
Char
) =>
x1
≤
x2
)
fun (
x1
x2
:
Char
) =>
x1
≤
x2
Equations
String.leTrans
=
{
trans
:=
⋯
}
source
instance
String
.
leAntisymm
:
Std.Antisymm
fun (
x1
x2
:
Char
) =>
x1
≤
x2
source
instance
String
.
ltAsymm
:
Std.Asymm
fun (
x1
x2
:
Char
) =>
x1
<
x2
source
instance
String
.
leTotal
:
Std.Total
fun (
x1
x2
:
Char
) =>
x1
≤
x2