- set : Lean.PersistentHashMap α Unit
Instances For
@[reducible, inline]
Equations
Instances For
@[inline]
Equations
Instances For
Equations
- Lean.PersistentHashSet.instInhabited = { default := Lean.PersistentHashSet.empty }
Equations
- Lean.PersistentHashSet.instEmptyCollection = { emptyCollection := Lean.PersistentHashSet.empty }
@[inline]
def
Lean.PersistentHashSet.isEmpty
{α : Type u_1}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(s : Lean.PersistentHashSet α)
:
Equations
- s.isEmpty = s.set.isEmpty
Instances For
@[inline]
def
Lean.PersistentHashSet.insert
{α : Type u_1}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(s : Lean.PersistentHashSet α)
(a : α)
:
Instances For
@[inline]
def
Lean.PersistentHashSet.erase
{α : Type u_1}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(s : Lean.PersistentHashSet α)
(a : α)
:
Equations
- s.erase a = { set := s.set.erase a }
Instances For
@[inline]
def
Lean.PersistentHashSet.contains
{α : Type u_1}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(s : Lean.PersistentHashSet α)
(a : α)
:
Equations
- s.contains a = s.set.contains a
Instances For
@[inline]
def
Lean.PersistentHashSet.foldM
{α : Type u_1}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
{m : Type v → Type v}
[Monad m]
(f : β → α → m β)
(init : β)
(s : Lean.PersistentHashSet α)
:
m β
Equations
- Lean.PersistentHashSet.foldM f init s = s.set.foldlM (fun (d : β) (a : α) (x : Unit) => f d a) init
Instances For
@[inline]
def
Lean.PersistentHashSet.fold
{α : Type u_1}
{x✝ : BEq α}
{x✝¹ : Hashable α}
{β : Type v}
(f : β → α → β)
(init : β)
(s : Lean.PersistentHashSet α)
:
β
Equations
- Lean.PersistentHashSet.fold f init s = (Lean.PersistentHashSet.foldM f init s).run