Auxiliary function for instantiating the loose bound variables in e
with args[start:stop]
.
This function is similar to instantiateRevRange
, but it applies beta-reduction when
we instantiate a bound variable with a lambda expression.
Example: Given the term #0 a
, and start := 0, stop := 1, args := #[fun x => x]
the result is
a
instead of (fun x => x) a
.
This reduction is useful when we are inferring the type of eliminator-like applications.
For example, given (n m : Nat) (f : Nat → Nat) (h : m = n)
,
the type of Eq.subst (motive := fun x => f m = f x) h rfl
is motive n
which is (fun (x : Nat) => f m = f x) n
This function reduces the new application to f m = f n
We use it to implement inferAppType
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- Lean.Meta.throwFunctionExpected f = Lean.throwError (Lean.toMessageData "function expected" ++ Lean.toMessageData (Lean.indentExpr f) ++ Lean.toMessageData "")
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- Lean.Meta.throwTypeExcepted type = Lean.throwError (Lean.toMessageData "type expected" ++ Lean.toMessageData (Lean.indentExpr type) ++ Lean.toMessageData "")
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- Lean.Meta.throwUnknownMVar mvarId = Lean.throwError (Lean.toMessageData "unknown metavariable '?" ++ Lean.toMessageData mvarId.name ++ Lean.toMessageData "'")
Instances For
Ensure MetaM
configuration is strong enough for inferring/checking types.
For example, beta := true
is essential when type checking.
Remark: we previously use the default configuration here, but this is problematic because it overrides unrelated configurations.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
- Lean.Meta.inferTypeImp.infer (Lean.Expr.const c []) = Lean.Meta.inferConstType✝ c []
- Lean.Meta.inferTypeImp.infer (Lean.Expr.const c us) = Lean.Meta.checkInferTypeCache✝ (Lean.Expr.const c us) (Lean.Meta.inferConstType✝ c us)
- Lean.Meta.inferTypeImp.infer (Lean.Expr.proj n i s) = Lean.Meta.checkInferTypeCache✝ (Lean.Expr.proj n i s) (Lean.Meta.inferProjType✝ n i s)
- Lean.Meta.inferTypeImp.infer (f.app arg) = Lean.Meta.checkInferTypeCache✝ (f.app arg) (Lean.Meta.inferAppType✝ f.getAppFn (f.app arg).getAppArgs)
- Lean.Meta.inferTypeImp.infer (Lean.Expr.mvar mvarId) = Lean.Meta.inferMVarType✝ mvarId
- Lean.Meta.inferTypeImp.infer (Lean.Expr.fvar fvarId) = Lean.Meta.inferFVarType✝ fvarId
- Lean.Meta.inferTypeImp.infer (Lean.Expr.bvar bidx) = Lean.throwError (Lean.toMessageData "unexpected bound variable " ++ Lean.toMessageData (Lean.mkBVar bidx) ++ Lean.toMessageData "")
- Lean.Meta.inferTypeImp.infer (Lean.Expr.mdata data e_2) = Lean.Meta.inferTypeImp.infer e_2
- Lean.Meta.inferTypeImp.infer (Lean.Expr.lit v) = pure v.type
- Lean.Meta.inferTypeImp.infer (Lean.Expr.sort lvl) = pure (Lean.mkSort (Lean.mkLevelSucc lvl))
Instances For
isPropQuick e
is an "approximate" predicate which returns LBool.true
if e
is a proposition.
isProp e
returns true
if e
is a proposition.
If e
contains metavariables, it may not be possible
to decide whether is a proposition or not. We return false
in this
case. We considered using LBool
and retuning LBool.undef
, but
we have no applications for it.
Equations
- One or more equations did not get rendered due to their size.
Instances For
isProofQuick e
is an "approximate" predicate which returns LBool.true
if e
is a proof.
Equations
- One or more equations did not get rendered due to their size.
Instances For
isTypeQuick e
is an "approximate" predicate which returns LBool.true
if e
is a type.
Return true
iff the type of e
is a Sort _
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- Lean.Meta.typeFormerTypeLevelQuick (Lean.Expr.forallE binderName binderType b binderInfo) = Lean.Meta.typeFormerTypeLevelQuick b
- Lean.Meta.typeFormerTypeLevelQuick (Lean.Expr.sort l) = some l
- Lean.Meta.typeFormerTypeLevelQuick x✝ = none
Instances For
Return u
iff type
is Sort u
or As → Sort u
.
Equations
- Lean.Meta.typeFormerTypeLevel type = match Lean.Meta.typeFormerTypeLevelQuick type with | some l => pure (some l) | none => Lean.Meta.savingCache (Lean.Meta.typeFormerTypeLevel.go type #[])
Instances For
Return true iff type
is Sort _
or As → Sort _
.
Equations
- Lean.Meta.isTypeFormerType type = do let __do_lift ← Lean.Meta.typeFormerTypeLevel type pure __do_lift.isSome
Instances For
Return true iff type
is Prop
or As → Prop
.
Equations
- Lean.Meta.isPropFormerType type = do let __do_lift ← Lean.Meta.typeFormerTypeLevel type pure (__do_lift == some Lean.Level.zero)
Instances For
Return true iff e : Sort _
or e : (forall As, Sort _)
.
Remark: it subsumes isType
Equations
- Lean.Meta.isTypeFormer e = do let __do_lift ← Lean.Meta.inferType e Lean.Meta.isTypeFormerType __do_lift
Instances For
Given n
and a non-dependent function type α₁ → α₂ → ... → αₙ → Sort u
, returns the
types α₁, α₂, ..., αₙ
. Throws an error if there are not at least n
argument types or if a
later argument type depends on a prior one (i.e., it's a dependent function type).
This can be used to infer the expected type of the alternatives when constructing a MatcherApp
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Infers the types of the next n
parameters that e
expects. See arrowDomainsN
.
Equations
- Lean.Meta.inferArgumentTypesN n e = do let __do_lift ← Lean.Meta.inferType e Lean.Meta.arrowDomainsN n __do_lift