Documentation

Mathlib.Algebra.Group.Opposite

Group structures on the multiplicative and additive opposites #

Additive structures on αᵐᵒᵖ #

Equations
Equations
Equations
Equations

Multiplicative structures on αᵐᵒᵖ #

We also generate additive structures on αᵃᵒᵖ using to_additive

instance MulOpposite.instMonoid {α : Type u_1} [Monoid α] :
Equations
@[simp]
theorem MulOpposite.op_pow {α : Type u_1} [Monoid α] (x : α) (n : ) :
@[simp]
theorem MulOpposite.unop_pow {α : Type u_1} [Monoid α] (x : αᵐᵒᵖ) (n : ) :
@[simp]
theorem MulOpposite.op_zpow {α : Type u_1} [DivInvMonoid α] (x : α) (z : ) :
@[simp]
theorem MulOpposite.unop_zpow {α : Type u_1} [DivInvMonoid α] (x : αᵐᵒᵖ) (z : ) :
@[simp]
theorem MulOpposite.op_natCast {α : Type u_1} [NatCast α] (n : ) :
MulOpposite.op n = n
@[simp]
theorem AddOpposite.op_natCast {α : Type u_1} [NatCast α] (n : ) :
AddOpposite.op n = n
@[simp]
theorem MulOpposite.op_ofNat {α : Type u_1} [NatCast α] (n : ) [n.AtLeastTwo] :
@[simp]
theorem AddOpposite.op_ofNat {α : Type u_1} [NatCast α] (n : ) [n.AtLeastTwo] :
@[simp]
theorem MulOpposite.op_intCast {α : Type u_1} [IntCast α] (n : ) :
MulOpposite.op n = n
@[simp]
theorem AddOpposite.op_intCast {α : Type u_1} [IntCast α] (n : ) :
AddOpposite.op n = n
@[simp]
theorem MulOpposite.unop_natCast {α : Type u_1} [NatCast α] (n : ) :
@[simp]
theorem AddOpposite.unop_natCast {α : Type u_1} [NatCast α] (n : ) :
@[simp]
theorem MulOpposite.unop_ofNat {α : Type u_1} [NatCast α] (n : ) [n.AtLeastTwo] :
@[simp]
theorem AddOpposite.unop_ofNat {α : Type u_1} [NatCast α] (n : ) [n.AtLeastTwo] :
@[simp]
theorem MulOpposite.unop_intCast {α : Type u_1} [IntCast α] (n : ) :
@[simp]
theorem AddOpposite.unop_intCast {α : Type u_1} [IntCast α] (n : ) :
@[simp]
theorem MulOpposite.op_div {α : Type u_1} [DivInvMonoid α] (x y : α) :
@[simp]
theorem AddOpposite.op_sub {α : Type u_1} [SubNegMonoid α] (x y : α) :
@[simp]
theorem SemiconjBy.op {α : Type u_1} [Mul α] {a x y : α} (h : SemiconjBy a x y) :
theorem AddSemiconjBy.op {α : Type u_1} [Add α] {a x y : α} (h : AddSemiconjBy a x y) :
theorem Commute.op {α : Type u_1} [Mul α] {x y : α} (h : Commute x y) :
theorem AddCommute.op {α : Type u_1} [Add α] {x y : α} (h : AddCommute x y) :
theorem Commute.unop {α : Type u_1} [Mul α] {x y : αᵐᵒᵖ} (h : Commute x y) :
theorem AddCommute.unop {α : Type u_1} [Add α] {x y : αᵃᵒᵖ} (h : AddCommute x y) :
@[simp]
theorem MulOpposite.commute_op {α : Type u_1} [Mul α] {x y : α} :
@[simp]
def MulOpposite.opAddEquiv {α : Type u_1} [Add α] :

The function MulOpposite.op is an additive equivalence.

Equations
Instances For

    Multiplicative structures on αᵃᵒᵖ #

    instance AddOpposite.pow {α : Type u_1} {β : Type u_2} [Pow α β] :
    Equations
    @[simp]
    theorem AddOpposite.op_pow {α : Type u_1} {β : Type u_2} [Pow α β] (a : α) (b : β) :
    @[simp]
    theorem AddOpposite.unop_pow {α : Type u_1} {β : Type u_2} [Pow α β] (a : αᵃᵒᵖ) (b : β) :
    def AddOpposite.opMulEquiv {α : Type u_1} [Mul α] :

    The function AddOpposite.op is a multiplicative equivalence.

    Equations
    Instances For

      Inversion on a group is a MulEquiv to the opposite group. When G is commutative, there is MulEquiv.inv.

      Equations
      Instances For

        Negation on an additive group is an AddEquiv to the opposite group. When G is commutative, there is AddEquiv.inv.

        Equations
        Instances For
          def MulHom.toOpposite {M : Type u_2} {N : Type u_3} [Mul M] [Mul N] (f : M →ₙ* N) (hf : ∀ (x y : M), Commute (f x) (f y)) :

          A semigroup homomorphism f : M →ₙ* N such that f x commutes with f y for all x, y defines a semigroup homomorphism to Nᵐᵒᵖ.

          Equations
          Instances For
            def AddHom.toOpposite {M : Type u_2} {N : Type u_3} [Add M] [Add N] (f : M →ₙ+ N) (hf : ∀ (x y : M), AddCommute (f x) (f y)) :

            An additive semigroup homomorphism f : AddHom M N such that f x additively commutes with f y for all x, y defines an additive semigroup homomorphism to Sᵃᵒᵖ.

            Equations
            Instances For
              @[simp]
              theorem MulHom.toOpposite_apply {M : Type u_2} {N : Type u_3} [Mul M] [Mul N] (f : M →ₙ* N) (hf : ∀ (x y : M), Commute (f x) (f y)) :
              (f.toOpposite hf) = MulOpposite.op f
              @[simp]
              theorem AddHom.toOpposite_apply {M : Type u_2} {N : Type u_3} [Add M] [Add N] (f : M →ₙ+ N) (hf : ∀ (x y : M), AddCommute (f x) (f y)) :
              (f.toOpposite hf) = AddOpposite.op f
              def MulHom.fromOpposite {M : Type u_2} {N : Type u_3} [Mul M] [Mul N] (f : M →ₙ* N) (hf : ∀ (x y : M), Commute (f x) (f y)) :

              A semigroup homomorphism f : M →ₙ* N such that f x commutes with f y for all x, y defines a semigroup homomorphism from Mᵐᵒᵖ.

              Equations
              Instances For
                def AddHom.fromOpposite {M : Type u_2} {N : Type u_3} [Add M] [Add N] (f : M →ₙ+ N) (hf : ∀ (x y : M), AddCommute (f x) (f y)) :

                An additive semigroup homomorphism f : AddHom M N such that f x additively commutes with f y for all x, y defines an additive semigroup homomorphism from Mᵃᵒᵖ.

                Equations
                Instances For
                  @[simp]
                  theorem AddHom.fromOpposite_apply {M : Type u_2} {N : Type u_3} [Add M] [Add N] (f : M →ₙ+ N) (hf : ∀ (x y : M), AddCommute (f x) (f y)) :
                  (f.fromOpposite hf) = f AddOpposite.unop
                  @[simp]
                  theorem MulHom.fromOpposite_apply {M : Type u_2} {N : Type u_3} [Mul M] [Mul N] (f : M →ₙ* N) (hf : ∀ (x y : M), Commute (f x) (f y)) :
                  (f.fromOpposite hf) = f MulOpposite.unop
                  def MonoidHom.toOpposite {M : Type u_2} {N : Type u_3} [MulOneClass M] [MulOneClass N] (f : M →* N) (hf : ∀ (x y : M), Commute (f x) (f y)) :

                  A monoid homomorphism f : M →* N such that f x commutes with f y for all x, y defines a monoid homomorphism to Nᵐᵒᵖ.

                  Equations
                  Instances For
                    def AddMonoidHom.toOpposite {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (hf : ∀ (x y : M), AddCommute (f x) (f y)) :

                    An additive monoid homomorphism f : M →+ N such that f x additively commutes with f y for all x, y defines an additive monoid homomorphism to Sᵃᵒᵖ.

                    Equations
                    Instances For
                      @[simp]
                      theorem AddMonoidHom.toOpposite_apply {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (hf : ∀ (x y : M), AddCommute (f x) (f y)) :
                      (f.toOpposite hf) = AddOpposite.op f
                      @[simp]
                      theorem MonoidHom.toOpposite_apply {M : Type u_2} {N : Type u_3} [MulOneClass M] [MulOneClass N] (f : M →* N) (hf : ∀ (x y : M), Commute (f x) (f y)) :
                      (f.toOpposite hf) = MulOpposite.op f
                      def MonoidHom.fromOpposite {M : Type u_2} {N : Type u_3} [MulOneClass M] [MulOneClass N] (f : M →* N) (hf : ∀ (x y : M), Commute (f x) (f y)) :

                      A monoid homomorphism f : M →* N such that f x commutes with f y for all x, y defines a monoid homomorphism from Mᵐᵒᵖ.

                      Equations
                      Instances For
                        def AddMonoidHom.fromOpposite {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (hf : ∀ (x y : M), AddCommute (f x) (f y)) :

                        An additive monoid homomorphism f : M →+ N such that f x additively commutes with f y for all x, y defines an additive monoid homomorphism from Mᵃᵒᵖ.

                        Equations
                        Instances For
                          @[simp]
                          theorem MonoidHom.fromOpposite_apply {M : Type u_2} {N : Type u_3} [MulOneClass M] [MulOneClass N] (f : M →* N) (hf : ∀ (x y : M), Commute (f x) (f y)) :
                          (f.fromOpposite hf) = f MulOpposite.unop
                          @[simp]
                          theorem AddMonoidHom.fromOpposite_apply {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (hf : ∀ (x y : M), AddCommute (f x) (f y)) :
                          (f.fromOpposite hf) = f AddOpposite.unop
                          def MulHom.op {M : Type u_2} {N : Type u_3} [Mul M] [Mul N] :

                          A semigroup homomorphism M →ₙ* N can equivalently be viewed as a semigroup homomorphism Mᵐᵒᵖ →ₙ* Nᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            def AddHom.op {M : Type u_2} {N : Type u_3} [Add M] [Add N] :

                            An additive semigroup homomorphism AddHom M N can equivalently be viewed as an additive semigroup homomorphism AddHom Mᵃᵒᵖ Nᵃᵒᵖ. This is the action of the (fully faithful)ᵃᵒᵖ-functor on morphisms.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem MulHom.op_symm_apply_apply {M : Type u_2} {N : Type u_3} [Mul M] [Mul N] (f : Mᵐᵒᵖ →ₙ* Nᵐᵒᵖ) (a✝ : M) :
                              (MulHom.op.symm f) a✝ = (MulOpposite.unop f MulOpposite.op) a✝
                              @[simp]
                              theorem AddHom.op_apply_apply {M : Type u_2} {N : Type u_3} [Add M] [Add N] (f : M →ₙ+ N) (a✝ : Mᵃᵒᵖ) :
                              (AddHom.op f) a✝ = (AddOpposite.op f AddOpposite.unop) a✝
                              @[simp]
                              theorem AddHom.op_symm_apply_apply {M : Type u_2} {N : Type u_3} [Add M] [Add N] (f : Mᵃᵒᵖ →ₙ+ Nᵃᵒᵖ) (a✝ : M) :
                              (AddHom.op.symm f) a✝ = (AddOpposite.unop f AddOpposite.op) a✝
                              @[simp]
                              theorem MulHom.op_apply_apply {M : Type u_2} {N : Type u_3} [Mul M] [Mul N] (f : M →ₙ* N) (a✝ : Mᵐᵒᵖ) :
                              (MulHom.op f) a✝ = (MulOpposite.op f MulOpposite.unop) a✝
                              def MulHom.unop {M : Type u_2} {N : Type u_3} [Mul M] [Mul N] :

                              The 'unopposite' of a semigroup homomorphism Mᵐᵒᵖ →ₙ* Nᵐᵒᵖ. Inverse to MulHom.op.

                              Equations
                              Instances For
                                def AddHom.unop {M : Type u_2} {N : Type u_3} [Add M] [Add N] :

                                The 'unopposite' of an additive semigroup homomorphism Mᵃᵒᵖ →ₙ+ Nᵃᵒᵖ. Inverse to AddHom.op.

                                Equations
                                Instances For
                                  def AddHom.mulOp {M : Type u_2} {N : Type u_3} [Add M] [Add N] :

                                  An additive semigroup homomorphism AddHom M N can equivalently be viewed as an additive homomorphism AddHom Mᵐᵒᵖ Nᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[simp]
                                    theorem AddHom.mulOp_apply_apply {M : Type u_2} {N : Type u_3} [Add M] [Add N] (f : M →ₙ+ N) (a✝ : Mᵐᵒᵖ) :
                                    (AddHom.mulOp f) a✝ = (MulOpposite.op f MulOpposite.unop) a✝
                                    @[simp]
                                    theorem AddHom.mulOp_symm_apply_apply {M : Type u_2} {N : Type u_3} [Add M] [Add N] (f : Mᵐᵒᵖ →ₙ+ Nᵐᵒᵖ) (a✝ : M) :
                                    def AddHom.mulUnop {α : Type u_2} {β : Type u_3} [Add α] [Add β] :

                                    The 'unopposite' of an additive semigroup hom αᵐᵒᵖ →+ βᵐᵒᵖ. Inverse to AddHom.mul_op.

                                    Equations
                                    Instances For
                                      def MonoidHom.op {M : Type u_2} {N : Type u_3} [MulOneClass M] [MulOneClass N] :

                                      A monoid homomorphism M →* N can equivalently be viewed as a monoid homomorphism Mᵐᵒᵖ →* Nᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        def AddMonoidHom.op {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] :

                                        An additive monoid homomorphism M →+ N can equivalently be viewed as an additive monoid homomorphism Mᵃᵒᵖ →+ Nᵃᵒᵖ. This is the action of the (fully faithful) ᵃᵒᵖ-functor on morphisms.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem MonoidHom.op_symm_apply_apply {M : Type u_2} {N : Type u_3} [MulOneClass M] [MulOneClass N] (f : Mᵐᵒᵖ →* Nᵐᵒᵖ) (a✝ : M) :
                                          @[simp]
                                          theorem MonoidHom.op_apply_apply {M : Type u_2} {N : Type u_3} [MulOneClass M] [MulOneClass N] (f : M →* N) (a✝ : Mᵐᵒᵖ) :
                                          (MonoidHom.op f) a✝ = (MulOpposite.op f MulOpposite.unop) a✝
                                          @[simp]
                                          theorem AddMonoidHom.op_symm_apply_apply {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] (f : Mᵃᵒᵖ →+ Nᵃᵒᵖ) (a✝ : M) :
                                          @[simp]
                                          theorem AddMonoidHom.op_apply_apply {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (a✝ : Mᵃᵒᵖ) :
                                          (AddMonoidHom.op f) a✝ = (AddOpposite.op f AddOpposite.unop) a✝
                                          def MonoidHom.unop {M : Type u_2} {N : Type u_3} [MulOneClass M] [MulOneClass N] :

                                          The 'unopposite' of a monoid homomorphism Mᵐᵒᵖ →* Nᵐᵒᵖ. Inverse to MonoidHom.op.

                                          Equations
                                          Instances For
                                            def AddMonoidHom.unop {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] :

                                            The 'unopposite' of an additive monoid homomorphism Mᵃᵒᵖ →+ Nᵃᵒᵖ. Inverse to AddMonoidHom.op.

                                            Equations
                                            Instances For

                                              A monoid is isomorphic to the opposite of its opposite.

                                              Equations
                                              Instances For

                                                A additive monoid is isomorphic to the opposite of its opposite.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  @[simp]
                                                  @[simp]
                                                  theorem AddEquiv.opOp_apply (M : Type u_2) [Add M] (a✝ : M) :
                                                  @[simp]
                                                  theorem MulEquiv.opOp_apply (M : Type u_2) [Mul M] (a✝ : M) :

                                                  An additive homomorphism M →+ N can equivalently be viewed as an additive homomorphism Mᵐᵒᵖ →+ Nᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    @[simp]
                                                    theorem AddMonoidHom.mulOp_apply_apply {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddZeroClass N] (f : M →+ N) (a✝ : Mᵐᵒᵖ) :
                                                    (AddMonoidHom.mulOp f) a✝ = (MulOpposite.op f MulOpposite.unop) a✝
                                                    @[simp]
                                                    def AddMonoidHom.mulUnop {α : Type u_2} {β : Type u_3} [AddZeroClass α] [AddZeroClass β] :

                                                    The 'unopposite' of an additive monoid hom αᵐᵒᵖ →+ βᵐᵒᵖ. Inverse to AddMonoidHom.mul_op.

                                                    Equations
                                                    Instances For
                                                      def AddEquiv.mulOp {α : Type u_2} {β : Type u_3} [Add α] [Add β] :

                                                      An iso α ≃+ β can equivalently be viewed as an iso αᵐᵒᵖ ≃+ βᵐᵒᵖ.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        @[simp]
                                                        theorem AddEquiv.mulOp_apply {α : Type u_2} {β : Type u_3} [Add α] [Add β] (f : α ≃+ β) :
                                                        AddEquiv.mulOp f = MulOpposite.opAddEquiv.symm.trans (f.trans MulOpposite.opAddEquiv)
                                                        @[simp]
                                                        theorem AddEquiv.mulOp_symm_apply {α : Type u_2} {β : Type u_3} [Add α] [Add β] (f : αᵐᵒᵖ ≃+ βᵐᵒᵖ) :
                                                        def AddEquiv.mulUnop {α : Type u_2} {β : Type u_3} [Add α] [Add β] :

                                                        The 'unopposite' of an iso αᵐᵒᵖ ≃+ βᵐᵒᵖ. Inverse to AddEquiv.mul_op.

                                                        Equations
                                                        Instances For
                                                          def MulEquiv.op {α : Type u_2} {β : Type u_3} [Mul α] [Mul β] :

                                                          An iso α ≃* β can equivalently be viewed as an iso αᵐᵒᵖ ≃* βᵐᵒᵖ.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            def AddEquiv.op {α : Type u_2} {β : Type u_3} [Add α] [Add β] :

                                                            An iso α ≃+ β can equivalently be viewed as an iso αᵃᵒᵖ ≃+ βᵃᵒᵖ.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              @[simp]
                                                              theorem MulEquiv.op_apply_symm_apply {α : Type u_2} {β : Type u_3} [Mul α] [Mul β] (f : α ≃* β) (a✝ : βᵐᵒᵖ) :
                                                              (MulEquiv.op f).symm a✝ = (MulOpposite.op f.symm MulOpposite.unop) a✝
                                                              @[simp]
                                                              theorem MulEquiv.op_symm_apply_apply {α : Type u_2} {β : Type u_3} [Mul α] [Mul β] (f : αᵐᵒᵖ ≃* βᵐᵒᵖ) (a✝ : α) :
                                                              @[simp]
                                                              theorem MulEquiv.op_symm_apply_symm_apply {α : Type u_2} {β : Type u_3} [Mul α] [Mul β] (f : αᵐᵒᵖ ≃* βᵐᵒᵖ) (a✝ : β) :
                                                              (MulEquiv.op.symm f).symm a✝ = (MulOpposite.unop f.symm MulOpposite.op) a✝
                                                              @[simp]
                                                              theorem MulEquiv.op_apply_apply {α : Type u_2} {β : Type u_3} [Mul α] [Mul β] (f : α ≃* β) (a✝ : αᵐᵒᵖ) :
                                                              (MulEquiv.op f) a✝ = (MulOpposite.op f MulOpposite.unop) a✝
                                                              @[simp]
                                                              theorem AddEquiv.op_apply_apply {α : Type u_2} {β : Type u_3} [Add α] [Add β] (f : α ≃+ β) (a✝ : αᵃᵒᵖ) :
                                                              (AddEquiv.op f) a✝ = (AddOpposite.op f AddOpposite.unop) a✝
                                                              @[simp]
                                                              theorem AddEquiv.op_symm_apply_symm_apply {α : Type u_2} {β : Type u_3} [Add α] [Add β] (f : αᵃᵒᵖ ≃+ βᵃᵒᵖ) (a✝ : β) :
                                                              (AddEquiv.op.symm f).symm a✝ = (AddOpposite.unop f.symm AddOpposite.op) a✝
                                                              @[simp]
                                                              theorem AddEquiv.op_symm_apply_apply {α : Type u_2} {β : Type u_3} [Add α] [Add β] (f : αᵃᵒᵖ ≃+ βᵃᵒᵖ) (a✝ : α) :
                                                              @[simp]
                                                              theorem AddEquiv.op_apply_symm_apply {α : Type u_2} {β : Type u_3} [Add α] [Add β] (f : α ≃+ β) (a✝ : βᵃᵒᵖ) :
                                                              (AddEquiv.op f).symm a✝ = (AddOpposite.op f.symm AddOpposite.unop) a✝
                                                              def MulEquiv.unop {α : Type u_2} {β : Type u_3} [Mul α] [Mul β] :

                                                              The 'unopposite' of an iso αᵐᵒᵖ ≃* βᵐᵒᵖ. Inverse to MulEquiv.op.

                                                              Equations
                                                              Instances For
                                                                def AddEquiv.unop {α : Type u_2} {β : Type u_3} [Add α] [Add β] :

                                                                The 'unopposite' of an iso αᵃᵒᵖ ≃+ βᵃᵒᵖ. Inverse to AddEquiv.op.

                                                                Equations
                                                                Instances For
                                                                  theorem AddMonoidHom.mul_op_ext {α : Type u_2} {β : Type u_3} [AddZeroClass α] [AddZeroClass β] (f g : αᵐᵒᵖ →+ β) (h : f.comp MulOpposite.opAddEquiv.toAddMonoidHom = g.comp MulOpposite.opAddEquiv.toAddMonoidHom) :
                                                                  f = g

                                                                  This ext lemma changes equalities on αᵐᵒᵖ →+ β to equalities on α →+ β. This is useful because there are often ext lemmas for specific αs that will apply to an equality of α →+ β such as Finsupp.addHom_ext'.