Documentation

Mathlib.Algebra.Order.BigOperators.Group.List

Big operators on a list in ordered groups #

This file contains the results concerning the interaction of list big operators with ordered groups/monoids.

theorem List.Forall₂.prod_le_prod' {M : Type u_3} [Monoid M] [Preorder M] [MulRightMono M] [MulLeftMono M] {l₁ l₂ : List M} (h : List.Forall₂ (fun (x1 x2 : M) => x1 x2) l₁ l₂) :
l₁.prod l₂.prod
theorem List.Forall₂.sum_le_sum {M : Type u_3} [AddMonoid M] [Preorder M] [AddRightMono M] [AddLeftMono M] {l₁ l₂ : List M} (h : List.Forall₂ (fun (x1 x2 : M) => x1 x2) l₁ l₂) :
l₁.sum l₂.sum
theorem List.Sublist.prod_le_prod' {M : Type u_3} [Monoid M] [Preorder M] [MulRightMono M] [MulLeftMono M] {l₁ l₂ : List M} (h : l₁.Sublist l₂) (h₁ : ∀ (a : M), a l₂1 a) :
l₁.prod l₂.prod

If l₁ is a sublist of l₂ and all elements of l₂ are greater than or equal to one, then l₁.prod ≤ l₂.prod. One can prove a stronger version assuming ∀ a ∈ l₂.diff l₁, 1 ≤ a instead of ∀ a ∈ l₂, 1 ≤ a but this lemma is not yet in mathlib.

theorem List.Sublist.sum_le_sum {M : Type u_3} [AddMonoid M] [Preorder M] [AddRightMono M] [AddLeftMono M] {l₁ l₂ : List M} (h : l₁.Sublist l₂) (h₁ : ∀ (a : M), a l₂0 a) :
l₁.sum l₂.sum

If l₁ is a sublist of l₂ and all elements of l₂ are nonnegative, then l₁.sum ≤ l₂.sum. One can prove a stronger version assuming ∀ a ∈ l₂.diff l₁, 0 ≤ a instead of ∀ a ∈ l₂, 0 ≤ a but this lemma is not yet in mathlib.

theorem List.SublistForall₂.prod_le_prod' {M : Type u_3} [Monoid M] [Preorder M] [MulRightMono M] [MulLeftMono M] {l₁ l₂ : List M} (h : List.SublistForall₂ (fun (x1 x2 : M) => x1 x2) l₁ l₂) (h₁ : ∀ (a : M), a l₂1 a) :
l₁.prod l₂.prod
theorem List.SublistForall₂.sum_le_sum {M : Type u_3} [AddMonoid M] [Preorder M] [AddRightMono M] [AddLeftMono M] {l₁ l₂ : List M} (h : List.SublistForall₂ (fun (x1 x2 : M) => x1 x2) l₁ l₂) (h₁ : ∀ (a : M), a l₂0 a) :
l₁.sum l₂.sum
theorem List.prod_le_prod' {ι : Type u_1} {M : Type u_3} [Monoid M] [Preorder M] [MulRightMono M] [MulLeftMono M] {l : List ι} {f g : ιM} (h : ∀ (i : ι), i lf i g i) :
(List.map f l).prod (List.map g l).prod
theorem List.sum_le_sum {ι : Type u_1} {M : Type u_3} [AddMonoid M] [Preorder M] [AddRightMono M] [AddLeftMono M] {l : List ι} {f g : ιM} (h : ∀ (i : ι), i lf i g i) :
(List.map f l).sum (List.map g l).sum
theorem List.prod_lt_prod' {ι : Type u_1} {M : Type u_3} [Monoid M] [Preorder M] [MulLeftStrictMono M] [MulLeftMono M] [MulRightStrictMono M] [MulRightMono M] {l : List ι} (f g : ιM) (h₁ : ∀ (i : ι), i lf i g i) (h₂ : ∃ (i : ι), i l f i < g i) :
(List.map f l).prod < (List.map g l).prod
theorem List.sum_lt_sum {ι : Type u_1} {M : Type u_3} [AddMonoid M] [Preorder M] [AddLeftStrictMono M] [AddLeftMono M] [AddRightStrictMono M] [AddRightMono M] {l : List ι} (f g : ιM) (h₁ : ∀ (i : ι), i lf i g i) (h₂ : ∃ (i : ι), i l f i < g i) :
(List.map f l).sum < (List.map g l).sum
theorem List.prod_lt_prod_of_ne_nil {ι : Type u_1} {M : Type u_3} [Monoid M] [Preorder M] [MulLeftStrictMono M] [MulLeftMono M] [MulRightStrictMono M] [MulRightMono M] {l : List ι} (hl : l []) (f g : ιM) (hlt : ∀ (i : ι), i lf i < g i) :
(List.map f l).prod < (List.map g l).prod
theorem List.sum_lt_sum_of_ne_nil {ι : Type u_1} {M : Type u_3} [AddMonoid M] [Preorder M] [AddLeftStrictMono M] [AddLeftMono M] [AddRightStrictMono M] [AddRightMono M] {l : List ι} (hl : l []) (f g : ιM) (hlt : ∀ (i : ι), i lf i < g i) :
(List.map f l).sum < (List.map g l).sum
theorem List.prod_le_pow_card {M : Type u_3} [Monoid M] [Preorder M] [MulRightMono M] [MulLeftMono M] (l : List M) (n : M) (h : ∀ (x : M), x lx n) :
l.prod n ^ l.length
theorem List.sum_le_card_nsmul {M : Type u_3} [AddMonoid M] [Preorder M] [AddRightMono M] [AddLeftMono M] (l : List M) (n : M) (h : ∀ (x : M), x lx n) :
l.sum l.length n
theorem List.pow_card_le_prod {M : Type u_3} [Monoid M] [Preorder M] [MulRightMono M] [MulLeftMono M] (l : List M) (n : M) (h : ∀ (x : M), x ln x) :
n ^ l.length l.prod
theorem List.card_nsmul_le_sum {M : Type u_3} [AddMonoid M] [Preorder M] [AddRightMono M] [AddLeftMono M] (l : List M) (n : M) (h : ∀ (x : M), x ln x) :
l.length n l.sum
theorem List.exists_lt_of_prod_lt' {ι : Type u_1} {M : Type u_3} [Monoid M] [LinearOrder M] [MulRightMono M] [MulLeftMono M] {l : List ι} (f g : ιM) (h : (List.map f l).prod < (List.map g l).prod) :
∃ (i : ι), i l f i < g i
theorem List.exists_lt_of_sum_lt {ι : Type u_1} {M : Type u_3} [AddMonoid M] [LinearOrder M] [AddRightMono M] [AddLeftMono M] {l : List ι} (f g : ιM) (h : (List.map f l).sum < (List.map g l).sum) :
∃ (i : ι), i l f i < g i
theorem List.exists_le_of_prod_le' {ι : Type u_1} {M : Type u_3} [Monoid M] [LinearOrder M] [MulLeftStrictMono M] [MulLeftMono M] [MulRightStrictMono M] [MulRightMono M] {l : List ι} (hl : l []) (f g : ιM) (h : (List.map f l).prod (List.map g l).prod) :
∃ (x : ι), x l f x g x
theorem List.exists_le_of_sum_le {ι : Type u_1} {M : Type u_3} [AddMonoid M] [LinearOrder M] [AddLeftStrictMono M] [AddLeftMono M] [AddRightStrictMono M] [AddRightMono M] {l : List ι} (hl : l []) (f g : ιM) (h : (List.map f l).sum (List.map g l).sum) :
∃ (x : ι), x l f x g x
theorem List.one_le_prod_of_one_le {M : Type u_3} [Monoid M] [Preorder M] [MulLeftMono M] {l : List M} (hl₁ : ∀ (x : M), x l1 x) :
1 l.prod
theorem List.sum_nonneg {M : Type u_3} [AddMonoid M] [Preorder M] [AddLeftMono M] {l : List M} (hl₁ : ∀ (x : M), x l0 x) :
0 l.sum
theorem List.max_prod_le {α : Type u_2} {M : Type u_3} [Monoid M] (l : List α) (f g : αM) [LinearOrder M] [MulLeftMono M] [MulRightMono M] :
(List.map f l).prod (List.map g l).prod (List.map (fun (i : α) => f i g i) l).prod
theorem List.max_sum_le {α : Type u_2} {M : Type u_3} [AddMonoid M] (l : List α) (f g : αM) [LinearOrder M] [AddLeftMono M] [AddRightMono M] :
(List.map f l).sum (List.map g l).sum (List.map (fun (i : α) => f i g i) l).sum
theorem List.prod_min_le {α : Type u_2} {M : Type u_3} [Monoid M] [LinearOrder M] [MulLeftMono M] [MulRightMono M] (l : List α) (f g : αM) :
(List.map (fun (i : α) => f i g i) l).prod (List.map f l).prod (List.map g l).prod
theorem List.sum_min_le {α : Type u_2} {M : Type u_3} [AddMonoid M] [LinearOrder M] [AddLeftMono M] [AddRightMono M] (l : List α) (f g : αM) :
(List.map (fun (i : α) => f i g i) l).sum (List.map f l).sum (List.map g l).sum
theorem List.sum_le_foldr_max {M : Type u_3} {N : Type u_4} [AddMonoid M] [AddMonoid N] [LinearOrder N] (f : MN) (h0 : f 0 0) (hadd : ∀ (x y : M), f (x + y) f x f y) (l : List M) :
f l.sum List.foldr max 0 (List.map f l)
theorem List.one_lt_prod_of_one_lt {M : Type u_3} [OrderedCommMonoid M] (l : List M) :
(∀ (x : M), x l1 < x)l []1 < l.prod
theorem List.sum_pos {M : Type u_3} [OrderedAddCommMonoid M] (l : List M) :
(∀ (x : M), x l0 < x)l []0 < l.sum
theorem List.single_le_prod {M : Type u_3} [OrderedCommMonoid M] {l : List M} (hl₁ : ∀ (x : M), x l1 x) (x : M) :
x lx l.prod

See also List.le_prod_of_mem.

theorem List.single_le_sum {M : Type u_3} [OrderedAddCommMonoid M] {l : List M} (hl₁ : ∀ (x : M), x l0 x) (x : M) :
x lx l.sum

See also List.le_sum_of_mem.

theorem List.all_one_of_le_one_le_of_prod_eq_one {M : Type u_3} [OrderedCommMonoid M] {l : List M} (hl₁ : ∀ (x : M), x l1 x) (hl₂ : l.prod = 1) {x : M} (hx : x l) :
x = 1
theorem List.all_zero_of_le_zero_le_of_sum_eq_zero {M : Type u_3} [OrderedAddCommMonoid M] {l : List M} (hl₁ : ∀ (x : M), x l0 x) (hl₂ : l.sum = 0) {x : M} (hx : x l) :
x = 0
theorem List.prod_eq_one_iff {M : Type u_3} [CanonicallyOrderedCommMonoid M] {l : List M} :
l.prod = 1 ∀ (x : M), x lx = 1
theorem List.sum_eq_zero_iff {M : Type u_3} [CanonicallyOrderedAddCommMonoid M] {l : List M} :
l.sum = 0 ∀ (x : M), x lx = 0
theorem List.monotone_prod_take {M : Type u_3} [CanonicallyOrderedCommMonoid M] (L : List M) :
Monotone fun (i : ) => (List.take i L).prod
theorem List.monotone_sum_take {M : Type u_3} [CanonicallyOrderedAddCommMonoid M] (L : List M) :
Monotone fun (i : ) => (List.take i L).sum
theorem List.le_prod_of_mem {M : Type u_3} [CanonicallyOrderedCommMonoid M] {xs : List M} {x : M} (h₁ : x xs) :
x xs.prod

See also List.single_le_prod.

theorem List.le_sum_of_mem {M : Type u_3} [CanonicallyOrderedAddCommMonoid M] {xs : List M} {x : M} (h₁ : x xs) :
x xs.sum

See also List.single_le_sum.