Canonically ordered semifields #
class
CanonicallyLinearOrderedSemifield
(α : Type u_2)
extends CanonicallyOrderedCommSemiring α, LinearOrderedSemifield α :
Type u_2
A canonically linear ordered field is a linear ordered field in which a ≤ b
iff there exists
c
with b = a + c
.
- add : α → α → α
- zero : α
- bot : α
- mul : α → α → α
- one : α
- natCast_zero : NatCast.natCast 0 = 0
- npow_succ (n : ℕ) (x : α) : CanonicallyOrderedCommSemiring.npow (n + 1) x = CanonicallyOrderedCommSemiring.npow n x * x
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
- min : α → α → α
- max : α → α → α
- decidableLE : DecidableRel fun (x1 x2 : α) => x1 ≤ x2
- decidableLT : DecidableRel fun (x1 x2 : α) => x1 < x2
- inv : α → α
- div : α → α → α
- zpow_succ' (n : ℕ) (a : α) : CanonicallyLinearOrderedSemifield.zpow (↑n.succ) a = CanonicallyLinearOrderedSemifield.zpow (↑n) a * a
- zpow_neg' (n : ℕ) (a : α) : CanonicallyLinearOrderedSemifield.zpow (Int.negSucc n) a = (CanonicallyLinearOrderedSemifield.zpow (↑n.succ) a)⁻¹
Instances
@[instance 100]
instance
CanonicallyLinearOrderedSemifield.toLinearOrderedCommGroupWithZero
{α : Type u_1}
[CanonicallyLinearOrderedSemifield α]
:
@[instance 100]
instance
CanonicallyLinearOrderedSemifield.toCanonicallyLinearOrderedAddCommMonoid
{α : Type u_1}
[CanonicallyLinearOrderedSemifield α]
:
Equations
- One or more equations did not get rendered due to their size.