Documentation

Mathlib.Algebra.Order.Group.Unbundled.Abs

Absolute values in ordered groups #

The absolute value of an element in a group which is also a lattice is its supremum with its negation. This generalizes the usual absolute value on real numbers (|x| = max x (-x)).

Notations #

def mabs {α : Type u_1} [Lattice α] [Group α] (a : α) :
α

mabs a is the absolute value of a.

Equations
Instances For
    def abs {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
    α

    abs a is the absolute value of a

    Equations
    Instances For

      mabs a is the absolute value of a.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        abs a is the absolute value of a

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Unexpander for the notation |a|ₘ for mabs a. Tries to add discretionary parentheses in unparsable cases.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Unexpander for the notation |a| for abs a. Tries to add discretionary parentheses in unparsable cases.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem mabs_le' {α : Type u_1} [Lattice α] [Group α] {a b : α} :
              mabs a b a b a⁻¹ b
              theorem abs_le' {α : Type u_1} [Lattice α] [AddGroup α] {a b : α} :
              |a| b a b -a b
              theorem le_mabs_self {α : Type u_1} [Lattice α] [Group α] (a : α) :
              a mabs a
              theorem le_abs_self {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
              a |a|
              theorem inv_le_mabs {α : Type u_1} [Lattice α] [Group α] (a : α) :
              theorem neg_le_abs {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
              -a |a|
              theorem mabs_le_mabs {α : Type u_1} [Lattice α] [Group α] {a b : α} (h₀ : a b) (h₁ : a⁻¹ b) :
              theorem abs_le_abs {α : Type u_1} [Lattice α] [AddGroup α] {a b : α} (h₀ : a b) (h₁ : -a b) :
              |a| |b|
              @[simp]
              theorem mabs_inv {α : Type u_1} [Lattice α] [Group α] (a : α) :
              @[simp]
              theorem abs_neg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
              |(-a)| = |a|
              theorem mabs_div_comm {α : Type u_1} [Lattice α] [Group α] (a b : α) :
              mabs (a / b) = mabs (b / a)
              theorem abs_sub_comm {α : Type u_1} [Lattice α] [AddGroup α] (a b : α) :
              |a - b| = |b - a|
              theorem mabs_of_one_le {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] (h : 1 a) :
              mabs a = a
              theorem abs_of_nonneg {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] (h : 0 a) :
              |a| = a
              theorem mabs_of_one_lt {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] (h : 1 < a) :
              mabs a = a
              theorem abs_of_pos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] (h : 0 < a) :
              |a| = a
              theorem mabs_of_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] (h : a 1) :
              theorem abs_of_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] (h : a 0) :
              |a| = -a
              theorem mabs_of_lt_one {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] (h : a < 1) :
              theorem abs_of_neg {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] (h : a < 0) :
              |a| = -a
              theorem mabs_le_mabs_of_one_le {α : Type u_1} [Lattice α] [Group α] {a b : α} [MulLeftMono α] (ha : 1 a) (hab : a b) :
              theorem abs_le_abs_of_nonneg {α : Type u_1} [Lattice α] [AddGroup α] {a b : α} [AddLeftMono α] (ha : 0 a) (hab : a b) :
              |a| |b|
              @[simp]
              theorem mabs_one {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] :
              mabs 1 = 1
              @[simp]
              theorem abs_zero {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] :
              |0| = 0
              @[simp]
              theorem one_le_mabs {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] [MulRightMono α] (a : α) :
              1 mabs a
              @[simp]
              theorem abs_nonneg {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] [AddRightMono α] (a : α) :
              0 |a|
              @[simp]
              theorem mabs_mabs {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] [MulRightMono α] (a : α) :
              mabs (mabs a) = mabs a
              @[simp]
              theorem abs_abs {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] [AddRightMono α] (a : α) :
              |(|a|)| = |a|
              theorem mabs_mul_le {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
              mabs (a * b) mabs a * mabs b

              The absolute value satisfies the triangle inequality.

              theorem abs_add_le {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
              |a + b| |a| + |b|

              The absolute value satisfies the triangle inequality.

              theorem mabs_mabs_div_mabs_le {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
              mabs (mabs a / mabs b) mabs (a / b)
              theorem abs_abs_sub_abs_le {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
              ||a| - |b|| |a - b|
              theorem sup_div_inf_eq_mabs_div {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
              (a b) / (a b) = mabs (b / a)
              theorem sup_sub_inf_eq_abs_sub {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
              a b - a b = |b - a|
              theorem sup_sq_eq_mul_mul_mabs_div {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
              (a b) ^ 2 = a * b * mabs (b / a)
              theorem two_nsmul_sup_eq_add_add_abs_sub {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
              2 (a b) = a + b + |b - a|
              theorem inf_sq_eq_mul_div_mabs_div {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
              (a b) ^ 2 = a * b / mabs (b / a)
              theorem two_nsmul_inf_eq_add_sub_abs_sub {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
              2 (a b) = a + b - |b - a|
              theorem mabs_div_sup_mul_mabs_div_inf {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b c : α) :
              mabs ((a c) / (b c)) * mabs ((a c) / (b c)) = mabs (a / b)
              theorem abs_sub_sup_add_abs_sub_inf {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b c : α) :
              |a c - b c| + |a c - b c| = |a - b|
              theorem mabs_sup_div_sup_le_mabs {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b c : α) :
              mabs ((a c) / (b c)) mabs (a / b)
              theorem abs_sup_sub_sup_le_abs {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b c : α) :
              |a c - b c| |a - b|
              theorem mabs_inf_div_inf_le_mabs {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b c : α) :
              mabs ((a c) / (b c)) mabs (a / b)
              theorem abs_inf_sub_inf_le_abs {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b c : α) :
              |a c - b c| |a - b|
              theorem m_Birkhoff_inequalities {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b c : α) :
              mabs ((a c) / (b c)) mabs ((a c) / (b c)) mabs (a / b)
              theorem Birkhoff_inequalities {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b c : α) :
              |a c - b c| |a c - b c| |a - b|
              theorem mabs_choice {α : Type u_1} [Group α] [LinearOrder α] (x : α) :
              mabs x = x mabs x = x⁻¹
              theorem abs_choice {α : Type u_1} [AddGroup α] [LinearOrder α] (x : α) :
              |x| = x |x| = -x
              theorem le_mabs {α : Type u_1} [Group α] [LinearOrder α] {a b : α} :
              a mabs b a b a b⁻¹
              theorem le_abs {α : Type u_1} [AddGroup α] [LinearOrder α] {a b : α} :
              a |b| a b a -b
              theorem mabs_eq_max_inv {α : Type u_1} [Group α] [LinearOrder α] {a : α} :
              theorem abs_eq_max_neg {α : Type u_1} [AddGroup α] [LinearOrder α] {a : α} :
              |a| = a -a
              theorem lt_mabs {α : Type u_1} [Group α] [LinearOrder α] {a b : α} :
              a < mabs b a < b a < b⁻¹
              theorem lt_abs {α : Type u_1} [AddGroup α] [LinearOrder α] {a b : α} :
              a < |b| a < b a < -b
              theorem mabs_by_cases {α : Type u_1} [Group α] [LinearOrder α] {a : α} (P : αProp) (h1 : P a) (h2 : P a⁻¹) :
              P (mabs a)
              theorem abs_by_cases {α : Type u_1} [AddGroup α] [LinearOrder α] {a : α} (P : αProp) (h1 : P a) (h2 : P (-a)) :
              P |a|
              theorem eq_or_eq_inv_of_mabs_eq {α : Type u_1} [Group α] [LinearOrder α] {a b : α} (h : mabs a = b) :
              a = b a = b⁻¹
              theorem eq_or_eq_neg_of_abs_eq {α : Type u_1} [AddGroup α] [LinearOrder α] {a b : α} (h : |a| = b) :
              a = b a = -b
              theorem mabs_eq_mabs {α : Type u_1} [Group α] [LinearOrder α] {a b : α} :
              mabs a = mabs b a = b a = b⁻¹
              theorem abs_eq_abs {α : Type u_1} [AddGroup α] [LinearOrder α] {a b : α} :
              |a| = |b| a = b a = -b
              theorem isSquare_mabs {α : Type u_1} [Group α] [LinearOrder α] {a : α} :
              theorem even_abs {α : Type u_1} [AddGroup α] [LinearOrder α] {a : α} :
              Even |a| Even a
              theorem lt_of_mabs_lt {α : Type u_1} [Group α] [LinearOrder α] {a b : α} :
              mabs a < ba < b
              theorem lt_of_abs_lt {α : Type u_1} [AddGroup α] [LinearOrder α] {a b : α} :
              |a| < ba < b
              @[simp]
              theorem one_lt_mabs {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a : α} :
              1 < mabs a a 1
              @[simp]
              theorem abs_pos {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a : α} :
              0 < |a| a 0
              theorem one_lt_mabs_pos_of_one_lt {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a : α} (h : 1 < a) :
              1 < mabs a
              theorem abs_pos_of_pos {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a : α} (h : 0 < a) :
              0 < |a|
              theorem one_lt_mabs_of_lt_one {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a : α} (h : a < 1) :
              1 < mabs a
              theorem abs_pos_of_neg {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a : α} (h : a < 0) :
              0 < |a|
              theorem inv_mabs_le {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] (a : α) :
              theorem neg_abs_le {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] (a : α) :
              -|a| a
              theorem one_le_mul_mabs {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] (a : α) :
              1 a * mabs a
              theorem add_abs_nonneg {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] (a : α) :
              0 a + |a|
              theorem inv_mabs_le_inv {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] (a : α) :
              theorem neg_abs_le_neg {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] (a : α) :
              -|a| -a
              theorem mabs_ne_one {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a : α} [MulRightMono α] :
              mabs a 1 a 1
              theorem abs_ne_zero {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a : α} [AddRightMono α] :
              |a| 0 a 0
              @[simp]
              theorem mabs_eq_one {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a : α} [MulRightMono α] :
              mabs a = 1 a = 1
              @[simp]
              theorem abs_eq_zero {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a : α} [AddRightMono α] :
              |a| = 0 a = 0
              @[simp]
              theorem mabs_le_one {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a : α} [MulRightMono α] :
              mabs a 1 a = 1
              @[simp]
              theorem abs_nonpos_iff {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a : α} [AddRightMono α] :
              |a| 0 a = 0
              theorem mabs_le_mabs_of_le_one {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a b : α} [MulRightMono α] (ha : a 1) (hab : b a) :
              theorem abs_le_abs_of_nonpos {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a b : α} [AddRightMono α] (ha : a 0) (hab : b a) :
              |a| |b|
              theorem mabs_lt {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a b : α} [MulRightMono α] :
              mabs a < b b⁻¹ < a a < b
              theorem abs_lt {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a b : α} [AddRightMono α] :
              |a| < b -b < a a < b
              theorem inv_lt_of_mabs_lt {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] {a b : α} [MulRightMono α] (h : mabs a < b) :
              b⁻¹ < a
              theorem neg_lt_of_abs_lt {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] {a b : α} [AddRightMono α] (h : |a| < b) :
              -b < a
              theorem max_div_min_eq_mabs' {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] [MulRightMono α] (a b : α) :
              (a b) / (a b) = mabs (a / b)
              theorem max_sub_min_eq_abs' {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] [AddRightMono α] (a b : α) :
              a b - a b = |a - b|
              theorem max_div_min_eq_mabs {α : Type u_1} [Group α] [LinearOrder α] [MulLeftMono α] [MulRightMono α] (a b : α) :
              (a b) / (a b) = mabs (b / a)
              theorem max_sub_min_eq_abs {α : Type u_1} [AddGroup α] [LinearOrder α] [AddLeftMono α] [AddRightMono α] (a b : α) :
              a b - a b = |b - a|

              A set s in a lattice ordered group is solid if for all x ∈ s and all y ∈ α such that |y| ≤ |x|, then y ∈ s.

              Equations
              Instances For

                The solid closure of a subset s is the smallest superset of s that is solid.

                Equations
                Instances For
                  @[simp]
                  theorem Pi.abs_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → AddGroup (α i)] [(i : ι) → Lattice (α i)] (f : (i : ι) → α i) (i : ι) :
                  |f| i = |f i|
                  theorem Pi.abs_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → AddGroup (α i)] [(i : ι) → Lattice (α i)] (f : (i : ι) → α i) :
                  |f| = fun (i : ι) => |f i|