Documentation

Mathlib.Algebra.Order.Hom.Monoid

Ordered monoid and group homomorphisms #

This file defines morphisms between (additive) ordered monoids.

Types of morphisms #

Notation #

Implementation notes #

There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion.

There is no OrderGroupHom -- the idea is that OrderMonoidHom is used. The constructor for OrderMonoidHom needs a proof of map_one as well as map_mul; a separate constructor OrderMonoidHom.mk' will construct ordered group homs (i.e. ordered monoid homs between ordered groups) given only a proof that multiplication is preserved,

Implicit {} brackets are often used instead of type class [] brackets. This is done when the instances can be inferred because they are implicit arguments to the type OrderMonoidHom. When they can be inferred from the type it is faster to use this method than to use type class inference.

Removed typeclasses #

This file used to define typeclasses for order-preserving (additive) monoid homomorphisms: OrderAddMonoidHomClass, OrderMonoidHomClass, and OrderMonoidWithZeroHomClass.

In https://github.com/leanprover-community/mathlib4/pull/10544 we migrated from these typeclasses to assumptions like [FunLike F M N] [MonoidHomClass F M N] [OrderHomClass F M N], making some definitions and lemmas irrelevant.

Tags #

ordered monoid, ordered group, monoid with zero

structure OrderAddMonoidHom (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] extends α →+ β :
Type (max u_6 u_7)

α →+o β is the type of monotone functions α → β that preserve the OrderedAddCommMonoid structure.

OrderAddMonoidHom is also used for ordered group homomorphisms.

When possible, instead of parametrizing results over (f : α →+o β), you should parametrize over (F : Type*) [FunLike F M N] [MonoidHomClass F M N] [OrderHomClass F M N] (f : F).

  • toFun : αβ
  • map_zero' : (↑self.toAddMonoidHom).toFun 0 = 0
  • map_add' (x y : α) : (↑self.toAddMonoidHom).toFun (x + y) = (↑self.toAddMonoidHom).toFun x + (↑self.toAddMonoidHom).toFun y
  • monotone' : Monotone (↑self.toAddMonoidHom).toFun

    An OrderAddMonoidHom is a monotone function.

Instances For
    structure OrderAddMonoidIso (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [Add α] [Add β] extends α ≃+ β :
    Type (max u_6 u_7)

    α ≃+o β is the type of monotone isomorphisms α ≃ β that preserve the OrderedAddCommMonoid structure.

    OrderAddMonoidIso is also used for ordered group isomorphisms.

    When possible, instead of parametrizing results over (f : α ≃+o β), you should parametrize over (F : Type*) [FunLike F M N] [AddEquivClass F M N] [OrderIsoClass F M N] (f : F).

    Instances For
      structure OrderMonoidHom (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] extends α →* β :
      Type (max u_6 u_7)

      α →*o β is the type of functions α → β that preserve the OrderedCommMonoid structure.

      OrderMonoidHom is also used for ordered group homomorphisms.

      When possible, instead of parametrizing results over (f : α →*o β), you should parametrize over (F : Type*) [FunLike F M N] [MonoidHomClass F M N] [OrderHomClass F M N] (f : F).

      • toFun : αβ
      • map_one' : (↑self.toMonoidHom).toFun 1 = 1
      • map_mul' (x y : α) : (↑self.toMonoidHom).toFun (x * y) = (↑self.toMonoidHom).toFun x * (↑self.toMonoidHom).toFun y
      • monotone' : Monotone (↑self.toMonoidHom).toFun

        An OrderMonoidHom is a monotone function.

      Instances For
        def OrderMonoidHomClass.toOrderMonoidHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] [FunLike F α β] [OrderHomClass F α β] [MonoidHomClass F α β] (f : F) :
        α →*o β

        Turn an element of a type F satisfying OrderHomClass F α β and MonoidHomClass F α β into an actual OrderMonoidHom. This is declared as the default coercion from F to α →*o β.

        Equations
        • f = { toMonoidHom := f, monotone' := }
        Instances For
          def OrderMonoidHomClass.toOrderAddMonoidHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [OrderHomClass F α β] [AddMonoidHomClass F α β] (f : F) :
          α →+o β

          Turn an element of a type F satisfying OrderHomClass F α β and AddMonoidHomClass F α β into an actual OrderAddMonoidHom. This is declared as the default coercion from F to α →+o β.

          Equations
          • f = { toAddMonoidHom := f, monotone' := }
          Instances For
            instance instCoeTCOrderMonoidHomOfOrderHomClassOfMonoidHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] [FunLike F α β] [OrderHomClass F α β] [MonoidHomClass F α β] :
            CoeTC F (α →*o β)

            Any type satisfying OrderMonoidHomClass can be cast into OrderMonoidHom via OrderMonoidHomClass.toOrderMonoidHom.

            Equations
            instance instCoeTCOrderAddMonoidHomOfOrderHomClassOfAddMonoidHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [OrderHomClass F α β] [AddMonoidHomClass F α β] :
            CoeTC F (α →+o β)

            Any type satisfying OrderAddMonoidHomClass can be cast into OrderAddMonoidHom via OrderAddMonoidHomClass.toOrderAddMonoidHom

            Equations
            structure OrderMonoidIso (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [Mul α] [Mul β] extends α ≃* β :
            Type (max u_6 u_7)

            α ≃*o β is the type of isomorphisms α ≃ β that preserve the OrderedCommMonoid structure.

            OrderMonoidIso is also used for ordered group isomorphisms.

            When possible, instead of parametrizing results over (f : α ≃*o β), you should parametrize over (F : Type*) [FunLike F M N] [MulEquivClass F M N] [OrderIsoClass F M N] (f : F).

            Instances For
              def OrderMonoidIsoClass.toOrderMonoidIso {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] [EquivLike F α β] [OrderIsoClass F α β] [MulEquivClass F α β] (f : F) :
              α ≃*o β

              Turn an element of a type F satisfying OrderIsoClass F α β and MulEquivClass F α β into an actual OrderMonoidIso. This is declared as the default coercion from F to α ≃*o β.

              Equations
              • f = { toMulEquiv := f, map_le_map_iff' := }
              Instances For
                def OrderMonoidIsoClass.toOrderAddMonoidIso {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [EquivLike F α β] [OrderIsoClass F α β] [AddEquivClass F α β] (f : F) :
                α ≃+o β

                Turn an element of a type F satisfying OrderIsoClass F α β and AddEquivClass F α β into an actual OrderAddMonoidIso. This is declared as the default coercion from F to α ≃+o β.

                Equations
                • f = { toAddEquiv := f, map_le_map_iff' := }
                Instances For
                  instance instCoeTCOrderAddMonoidHomOfOrderHomClassOfAddMonoidHomClass_1 {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [FunLike F α β] [OrderHomClass F α β] [AddMonoidHomClass F α β] :
                  CoeTC F (α →+o β)

                  Any type satisfying OrderAddMonoidHomClass can be cast into OrderAddMonoidHom via OrderAddMonoidHomClass.toOrderAddMonoidHom

                  Equations
                  instance instCoeTCOrderMonoidIsoOfOrderIsoClassOfMulEquivClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] [EquivLike F α β] [OrderIsoClass F α β] [MulEquivClass F α β] :
                  CoeTC F (α ≃*o β)

                  Any type satisfying OrderMonoidIsoClass can be cast into OrderMonoidIso via OrderMonoidIsoClass.toOrderMonoidIso.

                  Equations
                  instance instCoeTCOrderAddMonoidIsoOfOrderIsoClassOfAddEquivClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] [EquivLike F α β] [OrderIsoClass F α β] [AddEquivClass F α β] :
                  CoeTC F (α ≃+o β)

                  Any type satisfying OrderAddMonoidIsoClass can be cast into OrderAddMonoidIso via OrderAddMonoidIsoClass.toOrderAddMonoidIso

                  Equations
                  structure OrderMonoidWithZeroHom (α : Type u_6) (β : Type u_7) [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] extends α →*₀ β :
                  Type (max u_6 u_7)

                  OrderMonoidWithZeroHom α β is the type of functions α → β that preserve the MonoidWithZero structure.

                  OrderMonoidWithZeroHom is also used for group homomorphisms.

                  When possible, instead of parametrizing results over (f : α →+ β), you should parameterize over (F : Type*) [FunLike F M N] [MonoidWithZeroHomClass F M N] [OrderHomClass F M N] (f : F).

                  • toFun : αβ
                  • map_zero' : (↑self.toMonoidWithZeroHom).toFun 0 = 0
                  • map_one' : (↑self.toMonoidWithZeroHom).toFun 1 = 1
                  • map_mul' (x y : α) : (↑self.toMonoidWithZeroHom).toFun (x * y) = (↑self.toMonoidWithZeroHom).toFun x * (↑self.toMonoidWithZeroHom).toFun y
                  • monotone' : Monotone (↑self.toMonoidWithZeroHom).toFun

                    An OrderMonoidWithZeroHom is a monotone function.

                  Instances For
                    def OrderMonoidWithZeroHomClass.toOrderMonoidWithZeroHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] [FunLike F α β] [OrderHomClass F α β] [MonoidWithZeroHomClass F α β] (f : F) :
                    α →*₀o β

                    Turn an element of a type F satisfying OrderHomClass F α β and MonoidWithZeroHomClass F α β into an actual OrderMonoidWithZeroHom. This is declared as the default coercion from F to α →+*₀o β.

                    Equations
                    • f = { toMonoidWithZeroHom := f, monotone' := }
                    Instances For
                      theorem map_nonneg {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Preorder α] [Zero α] [Preorder β] [Zero β] [OrderHomClass F α β] [ZeroHomClass F α β] (f : F) {a : α} (ha : 0 a) :
                      0 f a

                      See also NonnegHomClass.apply_nonneg.

                      theorem map_nonpos {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [Preorder α] [Zero α] [Preorder β] [Zero β] [OrderHomClass F α β] [ZeroHomClass F α β] (f : F) {a : α} (ha : a 0) :
                      f a 0
                      theorem monotone_iff_map_nonneg {F : Type u_1} {α : Type u_2} {β : Type u_3} [OrderedAddCommGroup α] [OrderedAddCommMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
                      Monotone f ∀ (a : α), 0 a0 f a
                      theorem antitone_iff_map_nonpos {F : Type u_1} {α : Type u_2} {β : Type u_3} [OrderedAddCommGroup α] [OrderedAddCommMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
                      Antitone f ∀ (a : α), 0 af a 0
                      theorem monotone_iff_map_nonpos {F : Type u_1} {α : Type u_2} {β : Type u_3} [OrderedAddCommGroup α] [OrderedAddCommMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
                      Monotone f ∀ (a : α), a 0f a 0
                      theorem antitone_iff_map_nonneg {F : Type u_1} {α : Type u_2} {β : Type u_3} [OrderedAddCommGroup α] [OrderedAddCommMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] :
                      Antitone f ∀ (a : α), a 00 f a
                      theorem strictMono_iff_map_pos {F : Type u_1} {α : Type u_2} {β : Type u_3} [OrderedAddCommGroup α] [OrderedAddCommMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] [AddLeftStrictMono β] :
                      StrictMono f ∀ (a : α), 0 < a0 < f a
                      theorem strictAnti_iff_map_neg {F : Type u_1} {α : Type u_2} {β : Type u_3} [OrderedAddCommGroup α] [OrderedAddCommMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] [AddLeftStrictMono β] :
                      StrictAnti f ∀ (a : α), 0 < af a < 0
                      theorem strictMono_iff_map_neg {F : Type u_1} {α : Type u_2} {β : Type u_3} [OrderedAddCommGroup α] [OrderedAddCommMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] [AddLeftStrictMono β] :
                      StrictMono f ∀ (a : α), a < 0f a < 0
                      theorem strictAnti_iff_map_pos {F : Type u_1} {α : Type u_2} {β : Type u_3} [OrderedAddCommGroup α] [OrderedAddCommMonoid β] [i : FunLike F α β] (f : F) [iamhc : AddMonoidHomClass F α β] [AddLeftStrictMono β] :
                      StrictAnti f ∀ (a : α), a < 00 < f a
                      instance OrderMonoidHom.instFunLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
                      FunLike (α →*o β) α β
                      Equations
                      instance OrderAddMonoidHom.instFunLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] :
                      FunLike (α →+o β) α β
                      Equations
                      instance OrderMonoidHom.instOrderHomClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
                      OrderHomClass (α →*o β) α β
                      instance OrderAddMonoidHom.instOrderHomClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] :
                      OrderHomClass (α →+o β) α β
                      instance OrderMonoidHom.instMonoidHomClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
                      MonoidHomClass (α →*o β) α β
                      theorem OrderAddMonoidHom.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] {f g : α →+o β} (h : ∀ (a : α), f a = g a) :
                      f = g
                      theorem OrderMonoidHom.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] {f g : α →*o β} (h : ∀ (a : α), f a = g a) :
                      f = g
                      theorem OrderMonoidHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
                      (↑f.toMonoidHom).toFun = f
                      theorem OrderAddMonoidHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
                      (↑f.toAddMonoidHom).toFun = f
                      @[simp]
                      theorem OrderMonoidHom.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →* β) (h : Monotone (↑f).toFun) :
                      { toMonoidHom := f, monotone' := h } = f
                      @[simp]
                      theorem OrderAddMonoidHom.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+ β) (h : Monotone (↑f).toFun) :
                      { toAddMonoidHom := f, monotone' := h } = f
                      @[simp]
                      theorem OrderMonoidHom.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) (h : Monotone (↑f).toFun) :
                      { toMonoidHom := f, monotone' := h } = f
                      @[simp]
                      theorem OrderAddMonoidHom.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) (h : Monotone (↑f).toFun) :
                      { toAddMonoidHom := f, monotone' := h } = f
                      def OrderMonoidHom.toOrderHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
                      α →o β

                      Reinterpret an ordered monoid homomorphism as an order homomorphism.

                      Equations
                      • f.toOrderHom = { toFun := (↑f.toMonoidHom).toFun, monotone' := }
                      Instances For
                        def OrderAddMonoidHom.toOrderHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
                        α →o β

                        Reinterpret an ordered additive monoid homomorphism as an order homomorphism.

                        Equations
                        • f.toOrderHom = { toFun := (↑f.toAddMonoidHom).toFun, monotone' := }
                        Instances For
                          @[simp]
                          theorem OrderMonoidHom.coe_monoidHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
                          f = f
                          @[simp]
                          theorem OrderAddMonoidHom.coe_addMonoidHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
                          f = f
                          @[simp]
                          theorem OrderMonoidHom.coe_orderHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
                          f = f
                          @[simp]
                          theorem OrderAddMonoidHom.coe_orderHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
                          f = f
                          def OrderMonoidHom.copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) (f' : αβ) (h : f' = f) :
                          α →*o β

                          Copy of an OrderMonoidHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                          Equations
                          • f.copy f' h = { toFun := f', map_one' := , map_mul' := , monotone' := }
                          Instances For
                            def OrderAddMonoidHom.copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) (f' : αβ) (h : f' = f) :
                            α →+o β

                            Copy of an OrderAddMonoidHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                            Equations
                            • f.copy f' h = { toFun := f', map_zero' := , map_add' := , monotone' := }
                            Instances For
                              @[simp]
                              theorem OrderMonoidHom.coe_copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) (f' : αβ) (h : f' = f) :
                              (f.copy f' h) = f'
                              @[simp]
                              theorem OrderAddMonoidHom.coe_copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) (f' : αβ) (h : f' = f) :
                              (f.copy f' h) = f'
                              theorem OrderMonoidHom.copy_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) (f' : αβ) (h : f' = f) :
                              f.copy f' h = f
                              theorem OrderAddMonoidHom.copy_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) (f' : αβ) (h : f' = f) :
                              f.copy f' h = f
                              def OrderMonoidHom.id (α : Type u_2) [Preorder α] [MulOneClass α] :
                              α →*o α

                              The identity map as an ordered monoid homomorphism.

                              Equations
                              Instances For
                                def OrderAddMonoidHom.id (α : Type u_2) [Preorder α] [AddZeroClass α] :
                                α →+o α

                                The identity map as an ordered additive monoid homomorphism.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem OrderMonoidHom.coe_id (α : Type u_2) [Preorder α] [MulOneClass α] :
                                  @[simp]
                                  def OrderMonoidHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) :
                                  α →*o γ

                                  Composition of OrderMonoidHoms as an OrderMonoidHom.

                                  Equations
                                  • f.comp g = { toMonoidHom := f.comp g, monotone' := }
                                  Instances For
                                    def OrderAddMonoidHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) :
                                    α →+o γ

                                    Composition of OrderAddMonoidHoms as an OrderAddMonoidHom

                                    Equations
                                    • f.comp g = { toAddMonoidHom := f.comp g, monotone' := }
                                    Instances For
                                      @[simp]
                                      theorem OrderMonoidHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) :
                                      (f.comp g) = f g
                                      @[simp]
                                      theorem OrderAddMonoidHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) :
                                      (f.comp g) = f g
                                      @[simp]
                                      theorem OrderMonoidHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) (a : α) :
                                      (f.comp g) a = f (g a)
                                      @[simp]
                                      theorem OrderAddMonoidHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) (a : α) :
                                      (f.comp g) a = f (g a)
                                      theorem OrderMonoidHom.coe_comp_monoidHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) :
                                      (f.comp g) = (↑f).comp g
                                      theorem OrderAddMonoidHom.coe_comp_addMonoidHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) :
                                      (f.comp g) = (↑f).comp g
                                      theorem OrderMonoidHom.coe_comp_orderHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) (g : α →*o β) :
                                      (f.comp g) = (↑f).comp g
                                      theorem OrderAddMonoidHom.coe_comp_orderHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) (g : α →+o β) :
                                      (f.comp g) = (↑f).comp g
                                      @[simp]
                                      theorem OrderMonoidHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] [MulOneClass δ] (f : γ →*o δ) (g : β →*o γ) (h : α →*o β) :
                                      (f.comp g).comp h = f.comp (g.comp h)
                                      @[simp]
                                      theorem OrderAddMonoidHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] [AddZeroClass δ] (f : γ →+o δ) (g : β →+o γ) (h : α →+o β) :
                                      (f.comp g).comp h = f.comp (g.comp h)
                                      @[simp]
                                      theorem OrderMonoidHom.comp_id {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
                                      f.comp (OrderMonoidHom.id α) = f
                                      @[simp]
                                      theorem OrderAddMonoidHom.comp_id {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
                                      f.comp (OrderAddMonoidHom.id α) = f
                                      @[simp]
                                      theorem OrderMonoidHom.id_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (f : α →*o β) :
                                      (OrderMonoidHom.id β).comp f = f
                                      @[simp]
                                      theorem OrderAddMonoidHom.id_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (f : α →+o β) :
                                      (OrderAddMonoidHom.id β).comp f = f
                                      @[simp]
                                      theorem OrderMonoidHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] {g₁ g₂ : β →*o γ} {f : α →*o β} (hf : Function.Surjective f) :
                                      g₁.comp f = g₂.comp f g₁ = g₂
                                      @[simp]
                                      theorem OrderAddMonoidHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] {g₁ g₂ : β →+o γ} {f : α →+o β} (hf : Function.Surjective f) :
                                      g₁.comp f = g₂.comp f g₁ = g₂
                                      @[simp]
                                      theorem OrderMonoidHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] {g : β →*o γ} {f₁ f₂ : α →*o β} (hg : Function.Injective g) :
                                      g.comp f₁ = g.comp f₂ f₁ = f₂
                                      @[simp]
                                      theorem OrderAddMonoidHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] {g : β →+o γ} {f₁ f₂ : α →+o β} (hg : Function.Injective g) :
                                      g.comp f₁ = g.comp f₂ f₁ = f₂
                                      instance OrderMonoidHom.instOne {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
                                      One (α →*o β)

                                      1 is the homomorphism sending all elements to 1.

                                      Equations
                                      instance OrderAddMonoidHom.instZero {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] :
                                      Zero (α →+o β)

                                      0 is the homomorphism sending all elements to 0.

                                      Equations
                                      @[simp]
                                      theorem OrderMonoidHom.coe_one {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] :
                                      1 = 1
                                      @[simp]
                                      theorem OrderAddMonoidHom.coe_zero {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] :
                                      0 = 0
                                      @[simp]
                                      theorem OrderMonoidHom.one_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulOneClass α] [MulOneClass β] (a : α) :
                                      1 a = 1
                                      @[simp]
                                      theorem OrderAddMonoidHom.zero_apply {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [AddZeroClass α] [AddZeroClass β] (a : α) :
                                      0 a = 0
                                      @[simp]
                                      theorem OrderMonoidHom.one_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : α →*o β) :
                                      @[simp]
                                      theorem OrderAddMonoidHom.zero_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : α →+o β) :
                                      @[simp]
                                      theorem OrderMonoidHom.comp_one {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulOneClass α] [MulOneClass β] [MulOneClass γ] (f : β →*o γ) :
                                      f.comp 1 = 1
                                      @[simp]
                                      theorem OrderAddMonoidHom.comp_zero {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [AddZeroClass α] [AddZeroClass β] [AddZeroClass γ] (f : β →+o γ) :
                                      f.comp 0 = 0
                                      instance OrderMonoidHom.instMul {α : Type u_2} {β : Type u_3} [OrderedCommMonoid α] [OrderedCommMonoid β] :
                                      Mul (α →*o β)

                                      For two ordered monoid morphisms f and g, their product is the ordered monoid morphism sending a to f a * g a.

                                      Equations
                                      instance OrderAddMonoidHom.instAdd {α : Type u_2} {β : Type u_3} [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] :
                                      Add (α →+o β)

                                      For two ordered additive monoid morphisms f and g, their product is the ordered additive monoid morphism sending a to f a + g a.

                                      Equations
                                      @[simp]
                                      theorem OrderMonoidHom.coe_mul {α : Type u_2} {β : Type u_3} [OrderedCommMonoid α] [OrderedCommMonoid β] (f g : α →*o β) :
                                      (f * g) = f * g
                                      @[simp]
                                      theorem OrderAddMonoidHom.coe_add {α : Type u_2} {β : Type u_3} [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] (f g : α →+o β) :
                                      (f + g) = f + g
                                      @[simp]
                                      theorem OrderMonoidHom.mul_apply {α : Type u_2} {β : Type u_3} [OrderedCommMonoid α] [OrderedCommMonoid β] (f g : α →*o β) (a : α) :
                                      (f * g) a = f a * g a
                                      @[simp]
                                      theorem OrderAddMonoidHom.add_apply {α : Type u_2} {β : Type u_3} [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] (f g : α →+o β) (a : α) :
                                      (f + g) a = f a + g a
                                      theorem OrderMonoidHom.mul_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [OrderedCommMonoid α] [OrderedCommMonoid β] [OrderedCommMonoid γ] (g₁ g₂ : β →*o γ) (f : α →*o β) :
                                      (g₁ * g₂).comp f = g₁.comp f * g₂.comp f
                                      theorem OrderAddMonoidHom.add_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [OrderedAddCommMonoid γ] (g₁ g₂ : β →+o γ) (f : α →+o β) :
                                      (g₁ + g₂).comp f = g₁.comp f + g₂.comp f
                                      theorem OrderMonoidHom.comp_mul {α : Type u_2} {β : Type u_3} {γ : Type u_4} [OrderedCommMonoid α] [OrderedCommMonoid β] [OrderedCommMonoid γ] (g : β →*o γ) (f₁ f₂ : α →*o β) :
                                      g.comp (f₁ * f₂) = g.comp f₁ * g.comp f₂
                                      theorem OrderAddMonoidHom.comp_add {α : Type u_2} {β : Type u_3} {γ : Type u_4} [OrderedAddCommMonoid α] [OrderedAddCommMonoid β] [OrderedAddCommMonoid γ] (g : β →+o γ) (f₁ f₂ : α →+o β) :
                                      g.comp (f₁ + f₂) = g.comp f₁ + g.comp f₂
                                      @[simp]
                                      theorem OrderMonoidHom.toMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} {hα : OrderedCommMonoid α} {hβ : OrderedCommMonoid β} (f : α →*o β) :
                                      f.toMonoidHom = f
                                      @[simp]
                                      theorem OrderAddMonoidHom.toAddMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} {hα : OrderedAddCommMonoid α} {hβ : OrderedAddCommMonoid β} (f : α →+o β) :
                                      f.toAddMonoidHom = f
                                      @[simp]
                                      theorem OrderMonoidHom.toOrderHom_eq_coe {α : Type u_2} {β : Type u_3} {hα : OrderedCommMonoid α} {hβ : OrderedCommMonoid β} (f : α →*o β) :
                                      f.toOrderHom = f
                                      @[simp]
                                      theorem OrderAddMonoidHom.toOrderHom_eq_coe {α : Type u_2} {β : Type u_3} {hα : OrderedAddCommMonoid α} {hβ : OrderedAddCommMonoid β} (f : α →+o β) :
                                      f.toOrderHom = f
                                      def OrderMonoidHom.mk' {α : Type u_2} {β : Type u_3} {hα : OrderedCommGroup α} {hβ : OrderedCommGroup β} (f : αβ) (hf : Monotone f) (map_mul : ∀ (a b : α), f (a * b) = f a * f b) :
                                      α →*o β

                                      Makes an ordered group homomorphism from a proof that the map preserves multiplication.

                                      Equations
                                      Instances For
                                        def OrderAddMonoidHom.mk' {α : Type u_2} {β : Type u_3} {hα : OrderedAddCommGroup α} {hβ : OrderedAddCommGroup β} (f : αβ) (hf : Monotone f) (map_mul : ∀ (a b : α), f (a + b) = f a + f b) :
                                        α →+o β

                                        Makes an ordered additive group homomorphism from a proof that the map preserves addition.

                                        Equations
                                        Instances For
                                          instance OrderMonoidIso.instEquivLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] :
                                          EquivLike (α ≃*o β) α β
                                          Equations
                                          instance OrderAddMonoidIso.instEquivLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] :
                                          EquivLike (α ≃+o β) α β
                                          Equations
                                          instance OrderMonoidIso.instOrderIsoClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] :
                                          OrderIsoClass (α ≃*o β) α β
                                          instance OrderAddMonoidIso.instOrderIsoClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] :
                                          OrderIsoClass (α ≃+o β) α β
                                          instance OrderMonoidIso.instMulEquivClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] :
                                          MulEquivClass (α ≃*o β) α β
                                          instance OrderAddMonoidIso.instAddEquivClass {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] :
                                          AddEquivClass (α ≃+o β) α β
                                          theorem OrderAddMonoidIso.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] {f g : α ≃+o β} (h : ∀ (a : α), f a = g a) :
                                          f = g
                                          theorem OrderMonoidIso.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] {f g : α ≃*o β} (h : ∀ (a : α), f a = g a) :
                                          f = g
                                          theorem OrderMonoidIso.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                          f.toFun = f
                                          theorem OrderAddMonoidIso.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                          f.toFun = f
                                          @[simp]
                                          theorem OrderMonoidIso.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃* β) (h : ∀ {a b : α}, f.toFun a f.toFun b a b) :
                                          { toMulEquiv := f, map_le_map_iff' := h } = f
                                          @[simp]
                                          theorem OrderAddMonoidIso.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+ β) (h : ∀ {a b : α}, f.toFun a f.toFun b a b) :
                                          { toAddEquiv := f, map_le_map_iff' := h } = f
                                          @[simp]
                                          theorem OrderMonoidIso.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) (h : ∀ {a b : α}, (↑f).toFun a (↑f).toFun b a b) :
                                          { toMulEquiv := f, map_le_map_iff' := h } = f
                                          @[simp]
                                          theorem OrderAddMonoidIso.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) (h : ∀ {a b : α}, (↑f).toFun a (↑f).toFun b a b) :
                                          { toAddEquiv := f, map_le_map_iff' := h } = f
                                          def OrderMonoidIso.toOrderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                          α ≃o β

                                          Reinterpret an ordered monoid isomorphism as an order isomorphism.

                                          Equations
                                          • f.toOrderIso = { toEquiv := f.toEquiv, map_rel_iff' := }
                                          Instances For
                                            def OrderAddMonoidIso.toOrderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                            α ≃o β

                                            Reinterpret an ordered additive monoid isomomorphism as an order isomomorphism.

                                            Equations
                                            • f.toOrderIso = { toEquiv := f.toEquiv, map_rel_iff' := }
                                            Instances For
                                              @[simp]
                                              theorem OrderMonoidIso.coe_mulEquiv {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                              f = f
                                              @[simp]
                                              theorem OrderAddMonoidIso.coe_addEquiv {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                              f = f
                                              @[simp]
                                              theorem OrderMonoidIso.coe_orderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                              f = f
                                              @[simp]
                                              theorem OrderAddMonoidIso.coe_orderIso {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                              f = f
                                              def OrderMonoidIso.refl (α : Type u_2) [Preorder α] [Mul α] :
                                              α ≃*o α

                                              The identity map as an ordered monoid isomorphism.

                                              Equations
                                              Instances For
                                                def OrderAddMonoidIso.refl (α : Type u_2) [Preorder α] [Add α] :
                                                α ≃+o α

                                                The identity map as an ordered additive monoid isomorphism.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  theorem OrderMonoidIso.coe_refl (α : Type u_2) [Preorder α] [Mul α] :
                                                  @[simp]
                                                  theorem OrderAddMonoidIso.coe_refl (α : Type u_2) [Preorder α] [Add α] :
                                                  instance OrderMonoidIso.instInhabited (α : Type u_2) [Preorder α] [Mul α] :
                                                  Equations
                                                  def OrderMonoidIso.trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) :
                                                  α ≃*o γ

                                                  Transitivity of multiplication-preserving order isomorphisms

                                                  Equations
                                                  • f.trans g = { toMulEquiv := (↑f).trans g, map_le_map_iff' := }
                                                  Instances For
                                                    def OrderAddMonoidIso.trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) :
                                                    α ≃+o γ

                                                    Transitivity of addition-preserving order isomorphisms

                                                    Equations
                                                    • f.trans g = { toAddEquiv := (↑f).trans g, map_le_map_iff' := }
                                                    Instances For
                                                      @[simp]
                                                      theorem OrderMonoidIso.coe_trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) :
                                                      (f.trans g) = g f
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.coe_trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) :
                                                      (f.trans g) = g f
                                                      @[simp]
                                                      theorem OrderMonoidIso.trans_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) (a : α) :
                                                      (f.trans g) a = g (f a)
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.trans_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) (a : α) :
                                                      (f.trans g) a = g (f a)
                                                      theorem OrderMonoidIso.coe_trans_mulEquiv {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) :
                                                      (f.trans g) = (↑f).trans g
                                                      theorem OrderAddMonoidIso.coe_trans_addEquiv {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) :
                                                      (f.trans g) = (↑f).trans g
                                                      theorem OrderMonoidIso.coe_trans_orderIso {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] (f : α ≃*o β) (g : β ≃*o γ) :
                                                      (f.trans g) = (↑f).trans g
                                                      theorem OrderAddMonoidIso.coe_trans_orderIso {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] (f : α ≃+o β) (g : β ≃+o γ) :
                                                      (f.trans g) = (↑f).trans g
                                                      @[simp]
                                                      theorem OrderMonoidIso.trans_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [Mul α] [Mul β] [Mul γ] [Mul δ] (f : α ≃*o β) (g : β ≃*o γ) (h : γ ≃*o δ) :
                                                      (f.trans g).trans h = f.trans (g.trans h)
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.trans_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [Add α] [Add β] [Add γ] [Add δ] (f : α ≃+o β) (g : β ≃+o γ) (h : γ ≃+o δ) :
                                                      (f.trans g).trans h = f.trans (g.trans h)
                                                      @[simp]
                                                      theorem OrderMonoidIso.trans_refl {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                                      f.trans (OrderMonoidIso.refl β) = f
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.trans_refl {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                                      f.trans (OrderAddMonoidIso.refl β) = f
                                                      @[simp]
                                                      theorem OrderMonoidIso.refl_trans {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                                      (OrderMonoidIso.refl α).trans f = f
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.refl_trans {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                                      (OrderAddMonoidIso.refl α).trans f = f
                                                      @[simp]
                                                      theorem OrderMonoidIso.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] {g₁ g₂ : α ≃*o β} {f : β ≃*o γ} (hf : Function.Injective f) :
                                                      g₁.trans f = g₂.trans f g₁ = g₂
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] {g₁ g₂ : α ≃+o β} {f : β ≃+o γ} (hf : Function.Injective f) :
                                                      g₁.trans f = g₂.trans f g₁ = g₂
                                                      @[simp]
                                                      theorem OrderMonoidIso.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Mul α] [Mul β] [Mul γ] {g : α ≃*o β} {f₁ f₂ : β ≃*o γ} (hg : Function.Surjective g) :
                                                      g.trans f₁ = g.trans f₂ f₁ = f₂
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [Add α] [Add β] [Add γ] {g : α ≃+o β} {f₁ f₂ : β ≃+o γ} (hg : Function.Surjective g) :
                                                      g.trans f₁ = g.trans f₂ f₁ = f₂
                                                      @[simp]
                                                      theorem OrderMonoidIso.toMulEquiv_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                                      f.toMulEquiv = f
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.toAddEquiv_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                                      f.toAddEquiv = f
                                                      @[simp]
                                                      theorem OrderMonoidIso.toOrderIso_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                                      f.toOrderIso = f
                                                      @[simp]
                                                      theorem OrderAddMonoidIso.toOrderIso_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                                      f.toOrderIso = f
                                                      theorem OrderMonoidIso.strictMono {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                                      theorem OrderAddMonoidIso.strictMono {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                                      theorem OrderMonoidIso.strictMono_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Mul α] [Mul β] (f : α ≃*o β) :
                                                      StrictMono f.symm
                                                      theorem OrderAddMonoidIso.strictMono_symm {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [Add α] [Add β] (f : α ≃+o β) :
                                                      StrictMono f.symm
                                                      def OrderMonoidIso.mk' {α : Type u_2} {β : Type u_3} {hα : OrderedCommGroup α} {hβ : OrderedCommGroup β} (f : α β) (hf : ∀ {a b : α}, f a f b a b) (map_mul : ∀ (a b : α), f (a * b) = f a * f b) :
                                                      α ≃*o β

                                                      Makes an ordered group isomorphism from a proof that the map preserves multiplication.

                                                      Equations
                                                      Instances For
                                                        def OrderAddMonoidIso.mk' {α : Type u_2} {β : Type u_3} {hα : OrderedAddCommGroup α} {hβ : OrderedAddCommGroup β} (f : α β) (hf : ∀ {a b : α}, f a f b a b) (map_mul : ∀ (a b : α), f (a + b) = f a + f b) :
                                                        α ≃+o β

                                                        Makes an ordered additive group isomorphism from a proof that the map preserves addition.

                                                        Equations
                                                        Instances For
                                                          instance OrderMonoidWithZeroHom.instFunLike {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] :
                                                          FunLike (α →*₀o β) α β
                                                          Equations
                                                          theorem OrderMonoidWithZeroHom.ext {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] {f g : α →*₀o β} (h : ∀ (a : α), f a = g a) :
                                                          f = g
                                                          theorem OrderMonoidWithZeroHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
                                                          (↑f.toMonoidWithZeroHom).toFun = f
                                                          @[simp]
                                                          theorem OrderMonoidWithZeroHom.coe_mk {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀ β) (h : Monotone (↑f).toFun) :
                                                          { toMonoidWithZeroHom := f, monotone' := h } = f
                                                          @[simp]
                                                          theorem OrderMonoidWithZeroHom.mk_coe {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) (h : Monotone (↑f).toFun) :
                                                          { toMonoidWithZeroHom := f, monotone' := h } = f
                                                          def OrderMonoidWithZeroHom.toOrderMonoidHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
                                                          α →*o β

                                                          Reinterpret an ordered monoid with zero homomorphism as an order monoid homomorphism.

                                                          Equations
                                                          • f.toOrderMonoidHom = { toFun := (↑f.toMonoidWithZeroHom).toFun, map_one' := , map_mul' := , monotone' := }
                                                          Instances For
                                                            @[simp]
                                                            theorem OrderMonoidWithZeroHom.coe_monoidWithZeroHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
                                                            f = f
                                                            @[simp]
                                                            theorem OrderMonoidWithZeroHom.coe_orderMonoidHom {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
                                                            f = f
                                                            def OrderMonoidWithZeroHom.copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) (f' : αβ) (h : f' = f) :
                                                            α →*o β

                                                            Copy of an OrderMonoidWithZeroHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                                                            Equations
                                                            • f.copy f' h = { toFun := f', map_one' := , map_mul' := , monotone' := }
                                                            Instances For
                                                              @[simp]
                                                              theorem OrderMonoidWithZeroHom.coe_copy {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) (f' : αβ) (h : f' = f) :
                                                              (f.copy f' h) = f'
                                                              theorem OrderMonoidWithZeroHom.copy_eq {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) (f' : αβ) (h : f' = f) :
                                                              f.copy f' h = f

                                                              The identity map as an ordered monoid with zero homomorphism.

                                                              Equations
                                                              Instances For
                                                                def OrderMonoidWithZeroHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) :
                                                                α →*₀o γ

                                                                Composition of OrderMonoidWithZeroHoms as an OrderMonoidWithZeroHom.

                                                                Equations
                                                                • f.comp g = { toMonoidWithZeroHom := f.comp g, monotone' := }
                                                                Instances For
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) :
                                                                  (f.comp g) = f g
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) (a : α) :
                                                                  (f.comp g) a = f (g a)
                                                                  theorem OrderMonoidWithZeroHom.coe_comp_monoidWithZeroHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) :
                                                                  (f.comp g) = (↑f).comp g
                                                                  theorem OrderMonoidWithZeroHom.coe_comp_orderMonoidHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] (f : β →*₀o γ) (g : α →*₀o β) :
                                                                  (f.comp g) = (↑f).comp g
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [Preorder α] [Preorder β] [Preorder γ] [Preorder δ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] [MulZeroOneClass δ] (f : γ →*₀o δ) (g : β →*₀o γ) (h : α →*₀o β) :
                                                                  (f.comp g).comp h = f.comp (g.comp h)
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.comp_id {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.id_comp {α : Type u_2} {β : Type u_3} [Preorder α] [Preorder β] [MulZeroOneClass α] [MulZeroOneClass β] (f : α →*₀o β) :
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] {g₁ g₂ : β →*₀o γ} {f : α →*₀o β} (hf : Function.Surjective f) :
                                                                  g₁.comp f = g₂.comp f g₁ = g₂
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Preorder α] [Preorder β] [Preorder γ] [MulZeroOneClass α] [MulZeroOneClass β] [MulZeroOneClass γ] {g : β →*₀o γ} {f₁ f₂ : α →*₀o β} (hg : Function.Injective g) :
                                                                  g.comp f₁ = g.comp f₂ f₁ = f₂

                                                                  For two ordered monoid morphisms f and g, their product is the ordered monoid morphism sending a to f a * g a.

                                                                  Equations
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.coe_mul {α : Type u_2} {β : Type u_3} [LinearOrderedCommMonoidWithZero α] [LinearOrderedCommMonoidWithZero β] (f g : α →*₀o β) :
                                                                  (f * g) = f * g
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.mul_apply {α : Type u_2} {β : Type u_3} [LinearOrderedCommMonoidWithZero α] [LinearOrderedCommMonoidWithZero β] (f g : α →*₀o β) (a : α) :
                                                                  (f * g) a = f a * g a
                                                                  theorem OrderMonoidWithZeroHom.mul_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LinearOrderedCommMonoidWithZero α] [LinearOrderedCommMonoidWithZero β] [LinearOrderedCommMonoidWithZero γ] (g₁ g₂ : β →*₀o γ) (f : α →*₀o β) :
                                                                  (g₁ * g₂).comp f = g₁.comp f * g₂.comp f
                                                                  theorem OrderMonoidWithZeroHom.comp_mul {α : Type u_2} {β : Type u_3} {γ : Type u_4} [LinearOrderedCommMonoidWithZero α] [LinearOrderedCommMonoidWithZero β] [LinearOrderedCommMonoidWithZero γ] (g : β →*₀o γ) (f₁ f₂ : α →*₀o β) :
                                                                  g.comp (f₁ * f₂) = g.comp f₁ * g.comp f₂
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.toMonoidWithZeroHom_eq_coe {α : Type u_2} {β : Type u_3} {hα : Preorder α} {hα' : MulZeroOneClass α} {hβ : Preorder β} {hβ' : MulZeroOneClass β} (f : α →*₀o β) :
                                                                  f.toMonoidWithZeroHom = f
                                                                  @[simp]
                                                                  theorem OrderMonoidWithZeroHom.toOrderMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} {hα : Preorder α} {hα' : MulZeroOneClass α} {hβ : Preorder β} {hβ' : MulZeroOneClass β} (f : α →*₀o β) :
                                                                  f.toOrderMonoidHom = f

                                                                  Any ordered group is isomorphic to the units of itself adjoined with 0.

                                                                  Equations
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem OrderMonoidIso.unitsWithZero_toFun {α : Type u_6} [Group α] [Preorder α] (a : (WithZero α)ˣ) :
                                                                    OrderMonoidIso.unitsWithZero a = WithZero.unzero