Semifield structure on the type of nonnegative elements #
This file defines instances and prove some properties about the nonnegative elements
{x : α // 0 ≤ x}
of an arbitrary type α
.
This is used to derive algebraic structures on ℝ≥0
and ℚ≥0
automatically.
Main declarations #
{x : α // 0 ≤ x}
is aCanonicallyLinearOrderedSemifield
ifα
is aLinearOrderedField
.
Equations
- Nonneg.inv = { inv := fun (x : { x : α // 0 ≤ x }) => ⟨(↑x)⁻¹, ⋯⟩ }
@[simp]
@[simp]
Equations
- Nonneg.div = { div := fun (x y : { x : α // 0 ≤ x }) => ⟨↑x / ↑y, ⋯⟩ }
@[simp]
@[simp]
theorem
Nonneg.mk_div_mk
{α : Type u_1}
[LinearOrderedSemifield α]
{x y : α}
(hx : 0 ≤ x)
(hy : 0 ≤ y)
:
Equations
- Nonneg.zpow = { pow := fun (a : { x : α // 0 ≤ x }) (n : ℤ) => ⟨↑a ^ n, ⋯⟩ }
@[simp]
theorem
Nonneg.coe_zpow
{α : Type u_1}
[LinearOrderedSemifield α]
(a : { x : α // 0 ≤ x })
(n : ℤ)
:
@[simp]
Equations
- Nonneg.instNNRatCast = { nnratCast := fun (q : ℚ≥0) => ⟨↑q, ⋯⟩ }
Equations
- Nonneg.instNNRatSMul = { smul := fun (q : ℚ≥0) (a : { x : α // 0 ≤ x }) => ⟨q • ↑a, ⋯⟩ }
@[simp]
@[simp]
@[simp]
theorem
Nonneg.coe_nnqsmul
{α : Type u_1}
[LinearOrderedSemifield α]
(q : ℚ≥0)
(a : { x : α // 0 ≤ x })
:
@[simp]
theorem
Nonneg.mk_nnqsmul
{α : Type u_1}
[LinearOrderedSemifield α]
(q : ℚ≥0)
(a : α)
(ha : 0 ≤ a)
:
instance
Nonneg.linearOrderedSemifield
{α : Type u_1}
[LinearOrderedSemifield α]
:
LinearOrderedSemifield { x : α // 0 ≤ x }
Equations
- Nonneg.linearOrderedSemifield = Function.Injective.linearOrderedSemifield (fun (a : { x : α // 0 ≤ x }) => ↑a) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
Nonneg.canonicallyLinearOrderedSemifield
{α : Type u_1}
[LinearOrderedField α]
:
CanonicallyLinearOrderedSemifield { x : α // 0 ≤ x }
Equations
- One or more equations did not get rendered due to their size.
instance
Nonneg.linearOrderedCommGroupWithZero
{α : Type u_1}
[LinearOrderedField α]
:
LinearOrderedCommGroupWithZero { x : α // 0 ≤ x }