Documentation

Mathlib.Data.FinEnum

Type class for finitely enumerable types. The property is stronger than Fintype in that it assigns each element a rank in a finite enumeration.

class FinEnum (α : Sort u_1) :
Sort (max 1 u_1)

FinEnum α means that α is finite and can be enumerated in some order, i.e. α has an explicit bijection with Fin n for some n.

Instances
    def FinEnum.ofEquiv (α : Sort u_1) {β : Sort u_2} [FinEnum α] (h : β α) :

    transport a FinEnum instance across an equivalence

    Equations
    Instances For
      def FinEnum.ofNodupList {α : Type u} [DecidableEq α] (xs : List α) (h : ∀ (x : α), x xs) (h' : xs.Nodup) :

      create a FinEnum instance from an exhaustive list without duplicates

      Equations
      Instances For
        def FinEnum.ofList {α : Type u} [DecidableEq α] (xs : List α) (h : ∀ (x : α), x xs) :

        create a FinEnum instance from an exhaustive list; duplicates are removed

        Equations
        Instances For
          def FinEnum.toList (α : Type u_1) [FinEnum α] :
          List α

          create an exhaustive list of the values of a given type

          Equations
          Instances For
            @[simp]
            theorem FinEnum.mem_toList {α : Type u} [FinEnum α] (x : α) :
            @[simp]
            theorem FinEnum.nodup_toList {α : Type u} [FinEnum α] :
            (FinEnum.toList α).Nodup
            def FinEnum.ofSurjective {α : Type u} {β : Type u_1} (f : βα) [DecidableEq α] [FinEnum β] (h : Function.Surjective f) :

            create a FinEnum instance using a surjection

            Equations
            Instances For
              noncomputable def FinEnum.ofInjective {α : Type u_1} {β : Type u_2} (f : αβ) [DecidableEq α] [FinEnum β] (h : Function.Injective f) :

              create a FinEnum instance using an injection

              Equations
              Instances For
                @[simp]
                theorem FinEnum.equiv_up {α : Type u} [FinEnum α] (a : α) :
                FinEnum.equiv { down := a } = FinEnum.equiv a
                @[simp]
                theorem FinEnum.equiv_down {α : Type u} [FinEnum α] (a' : ULift.{u_1, u} α) :
                FinEnum.equiv a'.down = FinEnum.equiv a'
                @[simp]
                theorem FinEnum.up_equiv_symm {α : Type u} [FinEnum α] (i : Fin (FinEnum.card α)) :
                { down := FinEnum.equiv.symm i } = FinEnum.equiv.symm i
                @[simp]
                theorem FinEnum.down_equiv_symm {α : Type u} [FinEnum α] (i : Fin (FinEnum.card α)) :
                (FinEnum.equiv.symm i).down = FinEnum.equiv.symm i
                instance FinEnum.prod {α : Type u} {β : Type u_1} [FinEnum α] [FinEnum β] :
                FinEnum (α × β)
                Equations
                @[simp]
                theorem FinEnum.card_fin {n : } [FinEnum (Fin n)] :
                instance FinEnum.Quotient.enum {α : Type u} [FinEnum α] (s : Setoid α) [DecidableRel fun (x1 x2 : α) => x1 x2] :
                Equations
                def FinEnum.Finset.enum {α : Type u} [DecidableEq α] :
                List αList (Finset α)

                enumerate all finite sets of a given type

                Equations
                Instances For
                  @[simp]
                  theorem FinEnum.Finset.mem_enum {α : Type u} [DecidableEq α] (s : Finset α) (xs : List α) :
                  s FinEnum.Finset.enum xs xs, x xs
                  instance FinEnum.Subtype.finEnum {α : Type u} [FinEnum α] (p : αProp) [DecidablePred p] :
                  FinEnum { x : α // p x }
                  Equations
                  instance FinEnum.instSigma {α : Type u} (β : αType v) [FinEnum α] [(a : α) → FinEnum (β a)] :
                  Equations
                  instance FinEnum.PSigma.finEnum {α : Type u} {β : αType v} [FinEnum α] [(a : α) → FinEnum (β a)] :
                  FinEnum ((a : α) ×' β a)
                  Equations
                  instance FinEnum.PSigma.finEnumPropLeft {α : Prop} {β : αType v} [(a : α) → FinEnum (β a)] [Decidable α] :
                  FinEnum ((a : α) ×' β a)
                  Equations
                  instance FinEnum.PSigma.finEnumPropRight {α : Type u} {β : αProp} [FinEnum α] [(a : α) → Decidable (β a)] :
                  FinEnum ((a : α) ×' β a)
                  Equations
                  • One or more equations did not get rendered due to their size.
                  instance FinEnum.PSigma.finEnumPropProp {α : Prop} {β : αProp} [Decidable α] [(a : α) → Decidable (β a)] :
                  FinEnum ((a : α) ×' β a)
                  Equations
                  instance FinEnum.instSubtypeMemListOfDecidableEq {α : Type u} [DecidableEq α] (xs : List α) :
                  FinEnum { x : α // x xs }
                  Equations
                  @[instance 100]
                  instance FinEnum.instFintype {α : Type u} [FinEnum α] :
                  Equations

                  The enumeration merely adds an ordering, leaving the cardinality as is.

                  theorem FinEnum.card_unique {α : Type u} (e₁ e₂ : FinEnum α) :

                  Any two enumerations of the same type have the same length.

                  A type indexable by Fin 0 is empty and vice versa.

                  theorem FinEnum.card_eq_zero {α : Type u} [FinEnum α] [IsEmpty α] :

                  Any enumeration of an empty type has length 0.

                  theorem FinEnum.card_pos_iff {α : Type u} [FinEnum α] :

                  A type indexable by Fin n with positive n is inhabited and vice versa.

                  theorem FinEnum.card_pos {α : Type u_1} [FinEnum α] [Nonempty α] :

                  Any non-empty enumeration has more than one element.

                  theorem FinEnum.card_ne_zero {α : Type u_1} [FinEnum α] [Nonempty α] :

                  No non-empty enumeration has 0 elements.

                  theorem FinEnum.card_eq_one (α : Type u) [FinEnum α] [Unique α] :

                  Any enumeration of a type with unique inhabitant has length 1.

                  Equations
                  def FinEnum.ofIsEmpty {α : Type u} [IsEmpty α] :

                  An empty type has a trivial enumeration. Not registered as an instance, to make sure that there aren't two definitionally differing instances around.

                  Equations
                  Instances For
                    instance FinEnum.instUnique {α : Type u} [Unique α] :
                    Equations
                    def FinEnum.ofUnique {α : Type u} [Unique α] :

                    A type with unique inhabitant has a trivial enumeration. Not registered as an instance, to make sure that there aren't two definitionally differing instances around.

                    Equations
                    Instances For
                      theorem List.mem_pi_toList {α : Type u_1} [FinEnum α] {β : αType u_2} [(a : α) → FinEnum (β a)] (xs : List α) (f : (a : α) → a xsβ a) :
                      f xs.pi fun (x : α) => FinEnum.toList (β x)
                      def List.Pi.enum {α : Type u_1} [FinEnum α] (β : αType u_3) [(a : α) → FinEnum (β a)] :
                      List ((a : α) → β a)

                      enumerate all functions whose domain and range are finitely enumerable

                      Equations
                      Instances For
                        theorem List.Pi.mem_enum {α : Type u_1} [FinEnum α] {β : αType u_2} [(a : α) → FinEnum (β a)] (f : (a : α) → β a) :
                        instance List.Pi.finEnum {α : Type u_1} [FinEnum α] {β : αType u_2} [(a : α) → FinEnum (β a)] :
                        FinEnum ((a : α) → β a)
                        Equations
                        instance List.pfunFinEnum (p : Prop) [Decidable p] (α : pType) [(hp : p) → FinEnum (α hp)] :
                        FinEnum ((hp : p) → α hp)
                        Equations