Documentation

Mathlib.Data.Multiset.Basic

Multisets #

Multisets are finite sets with duplicates allowed. They are implemented here as the quotient of lists by permutation. This gives them computational content.

Notation #

def Multiset (α : Type u) :

Multiset α is the quotient of List α by list permutation. The result is a type of finite sets with duplicates allowed.

Equations
Instances For
    def Multiset.ofList {α : Type u_1} :
    List αMultiset α

    The quotient map from List α to Multiset α.

    Equations
    Instances For
      instance Multiset.instCoeList {α : Type u_1} :
      Coe (List α) (Multiset α)
      Equations
      @[simp]
      theorem Multiset.quot_mk_to_coe {α : Type u_1} (l : List α) :
      l = l
      @[simp]
      theorem Multiset.quot_mk_to_coe' {α : Type u_1} (l : List α) :
      Quot.mk (fun (x1 x2 : List α) => x1 x2) l = l
      @[simp]
      theorem Multiset.quot_mk_to_coe'' {α : Type u_1} (l : List α) :
      Quot.mk (⇑(List.isSetoid α)) l = l
      @[simp]
      theorem Multiset.lift_coe {α : Type u_3} {β : Type u_4} (x : List α) (f : List αβ) (h : ∀ (a b : List α), a bf a = f b) :
      Quotient.lift f h x = f x
      @[simp]
      theorem Multiset.coe_eq_coe {α : Type u_1} {l₁ l₂ : List α} :
      l₁ = l₂ l₁.Perm l₂
      instance Multiset.instDecidableEquivListOfDecidableEq {α : Type u_1} [DecidableEq α] (l₁ l₂ : List α) :
      Decidable (l₁ l₂)
      Equations
      instance Multiset.instDecidableRListOfDecidableEq {α : Type u_1} [DecidableEq α] (l₁ l₂ : List α) :
      Decidable ((List.isSetoid α) l₁ l₂)
      Equations
      Equations
      def Multiset.sizeOf {α : Type u_1} [SizeOf α] (s : Multiset α) :

      defines a size for a multiset by referring to the size of the underlying list

      Equations
      Instances For
        instance Multiset.instSizeOf {α : Type u_1} [SizeOf α] :
        Equations

        Empty multiset #

        def Multiset.zero {α : Type u_1} :

        0 : Multiset α is the empty set

        Equations
        Instances For
          instance Multiset.instZero {α : Type u_1} :
          Equations
          Equations
          Equations
          Equations
          @[simp]
          theorem Multiset.coe_nil {α : Type u_1} :
          [] = 0
          @[simp]
          theorem Multiset.empty_eq_zero {α : Type u_1} :
          = 0
          @[simp]
          theorem Multiset.coe_eq_zero {α : Type u_1} (l : List α) :
          l = 0 l = []
          theorem Multiset.coe_eq_zero_iff_isEmpty {α : Type u_1} (l : List α) :
          l = 0 l.isEmpty = true

          Multiset.cons #

          def Multiset.cons {α : Type u_1} (a : α) (s : Multiset α) :

          cons a s is the multiset which contains s plus one more instance of a.

          Equations
          Instances For

            cons a s is the multiset which contains s plus one more instance of a.

            Equations
            Instances For
              instance Multiset.instInsert {α : Type u_1} :
              Equations
              @[simp]
              theorem Multiset.insert_eq_cons {α : Type u_1} (a : α) (s : Multiset α) :
              insert a s = a ::ₘ s
              @[simp]
              theorem Multiset.cons_coe {α : Type u_1} (a : α) (l : List α) :
              a ::ₘ l = (a :: l)
              @[simp]
              theorem Multiset.cons_inj_left {α : Type u_1} {a b : α} (s : Multiset α) :
              a ::ₘ s = b ::ₘ s a = b
              @[simp]
              theorem Multiset.cons_inj_right {α : Type u_1} (a : α) {s t : Multiset α} :
              a ::ₘ s = a ::ₘ t s = t
              theorem Multiset.induction {α : Type u_1} {p : Multiset αProp} (empty : p 0) (cons : ∀ (a : α) (s : Multiset α), p sp (a ::ₘ s)) (s : Multiset α) :
              p s
              theorem Multiset.induction_on {α : Type u_1} {p : Multiset αProp} (s : Multiset α) (empty : p 0) (cons : ∀ (a : α) (s : Multiset α), p sp (a ::ₘ s)) :
              p s
              theorem Multiset.cons_swap {α : Type u_1} (a b : α) (s : Multiset α) :
              a ::ₘ b ::ₘ s = b ::ₘ a ::ₘ s
              def Multiset.rec {α : Type u_1} {C : Multiset αSort u_3} (C_0 : C 0) (C_cons : (a : α) → (m : Multiset α) → C mC (a ::ₘ m)) (C_cons_heq : ∀ (a a' : α) (m : Multiset α) (b : C m), HEq (C_cons a (a' ::ₘ m) (C_cons a' m b)) (C_cons a' (a ::ₘ m) (C_cons a m b))) (m : Multiset α) :
              C m

              Dependent recursor on multisets. TODO: should be @[recursor 6], but then the definition of Multiset.pi fails with a stack overflow in whnf.

              Equations
              Instances For
                def Multiset.recOn {α : Type u_1} {C : Multiset αSort u_3} (m : Multiset α) (C_0 : C 0) (C_cons : (a : α) → (m : Multiset α) → C mC (a ::ₘ m)) (C_cons_heq : ∀ (a a' : α) (m : Multiset α) (b : C m), HEq (C_cons a (a' ::ₘ m) (C_cons a' m b)) (C_cons a' (a ::ₘ m) (C_cons a m b))) :
                C m

                Companion to Multiset.rec with more convenient argument order.

                Equations
                • m.recOn C_0 C_cons C_cons_heq = Multiset.rec C_0 C_cons C_cons_heq m
                Instances For
                  @[simp]
                  theorem Multiset.recOn_0 {α : Type u_1} {C : Multiset αSort u_3} {C_0 : C 0} {C_cons : (a : α) → (m : Multiset α) → C mC (a ::ₘ m)} {C_cons_heq : ∀ (a a' : α) (m : Multiset α) (b : C m), HEq (C_cons a (a' ::ₘ m) (C_cons a' m b)) (C_cons a' (a ::ₘ m) (C_cons a m b))} :
                  Multiset.recOn 0 C_0 C_cons C_cons_heq = C_0
                  @[simp]
                  theorem Multiset.recOn_cons {α : Type u_1} {C : Multiset αSort u_3} {C_0 : C 0} {C_cons : (a : α) → (m : Multiset α) → C mC (a ::ₘ m)} {C_cons_heq : ∀ (a a' : α) (m : Multiset α) (b : C m), HEq (C_cons a (a' ::ₘ m) (C_cons a' m b)) (C_cons a' (a ::ₘ m) (C_cons a m b))} (a : α) (m : Multiset α) :
                  (a ::ₘ m).recOn C_0 C_cons C_cons_heq = C_cons a m (m.recOn C_0 C_cons C_cons_heq)
                  def Multiset.Mem {α : Type u_1} (s : Multiset α) (a : α) :

                  a ∈ s means that a has nonzero multiplicity in s.

                  Equations
                  Instances For
                    @[simp]
                    theorem Multiset.mem_coe {α : Type u_1} {a : α} {l : List α} :
                    a l a l
                    instance Multiset.decidableMem {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
                    Equations
                    @[simp]
                    theorem Multiset.mem_cons {α : Type u_1} {a b : α} {s : Multiset α} :
                    a b ::ₘ s a = b a s
                    theorem Multiset.mem_cons_of_mem {α : Type u_1} {a b : α} {s : Multiset α} (h : a s) :
                    a b ::ₘ s
                    theorem Multiset.mem_cons_self {α : Type u_1} (a : α) (s : Multiset α) :
                    a a ::ₘ s
                    theorem Multiset.forall_mem_cons {α : Type u_1} {p : αProp} {a : α} {s : Multiset α} :
                    (∀ xa ::ₘ s, p x) p a xs, p x
                    theorem Multiset.exists_cons_of_mem {α : Type u_1} {s : Multiset α} {a : α} :
                    a s∃ (t : Multiset α), s = a ::ₘ t
                    @[simp]
                    theorem Multiset.not_mem_zero {α : Type u_1} (a : α) :
                    a0
                    theorem Multiset.eq_zero_of_forall_not_mem {α : Type u_1} {s : Multiset α} :
                    (∀ (x : α), xs)s = 0
                    theorem Multiset.eq_zero_iff_forall_not_mem {α : Type u_1} {s : Multiset α} :
                    s = 0 ∀ (a : α), as
                    theorem Multiset.exists_mem_of_ne_zero {α : Type u_1} {s : Multiset α} :
                    s 0∃ (a : α), a s
                    theorem Multiset.empty_or_exists_mem {α : Type u_1} (s : Multiset α) :
                    s = 0 ∃ (a : α), a s
                    @[simp]
                    theorem Multiset.zero_ne_cons {α : Type u_1} {a : α} {m : Multiset α} :
                    0 a ::ₘ m
                    @[simp]
                    theorem Multiset.cons_ne_zero {α : Type u_1} {a : α} {m : Multiset α} :
                    a ::ₘ m 0
                    theorem Multiset.cons_eq_cons {α : Type u_1} {a b : α} {as bs : Multiset α} :
                    a ::ₘ as = b ::ₘ bs a = b as = bs a b ∃ (cs : Multiset α), as = b ::ₘ cs bs = a ::ₘ cs

                    Singleton #

                    instance Multiset.instSingleton {α : Type u_1} :
                    Equations
                    @[simp]
                    theorem Multiset.cons_zero {α : Type u_1} (a : α) :
                    a ::ₘ 0 = {a}
                    @[simp]
                    theorem Multiset.coe_singleton {α : Type u_1} (a : α) :
                    [a] = {a}
                    @[simp]
                    theorem Multiset.mem_singleton {α : Type u_1} {a b : α} :
                    b {a} b = a
                    theorem Multiset.mem_singleton_self {α : Type u_1} (a : α) :
                    a {a}
                    @[simp]
                    theorem Multiset.singleton_inj {α : Type u_1} {a b : α} :
                    {a} = {b} a = b
                    @[simp]
                    theorem Multiset.coe_eq_singleton {α : Type u_1} {l : List α} {a : α} :
                    l = {a} l = [a]
                    @[simp]
                    theorem Multiset.singleton_eq_cons_iff {α : Type u_1} {a b : α} (m : Multiset α) :
                    {a} = b ::ₘ m a = b m = 0
                    theorem Multiset.pair_comm {α : Type u_1} (x y : α) :
                    {x, y} = {y, x}

                    Multiset.Subset #

                    def Multiset.Subset {α : Type u_1} (s t : Multiset α) :

                    s ⊆ t is the lift of the list subset relation. It means that any element with nonzero multiplicity in s has nonzero multiplicity in t, but it does not imply that the multiplicity of a in s is less or equal than in t; see s ≤ t for this relation.

                    Equations
                    • s.Subset t = ∀ ⦃a : α⦄, a sa t
                    Instances For
                      Equations
                      instance Multiset.instIsNonstrictStrictOrder {α : Type u_1} :
                      IsNonstrictStrictOrder (Multiset α) (fun (x1 x2 : Multiset α) => x1 x2) fun (x1 x2 : Multiset α) => x1 x2
                      @[simp]
                      theorem Multiset.coe_subset {α : Type u_1} {l₁ l₂ : List α} :
                      l₁ l₂ l₁ l₂
                      @[simp]
                      theorem Multiset.Subset.refl {α : Type u_1} (s : Multiset α) :
                      s s
                      theorem Multiset.Subset.trans {α : Type u_1} {s t u : Multiset α} :
                      s tt us u
                      theorem Multiset.subset_iff {α : Type u_1} {s t : Multiset α} :
                      s t ∀ ⦃x : α⦄, x sx t
                      theorem Multiset.mem_of_subset {α : Type u_1} {s t : Multiset α} {a : α} (h : s t) :
                      a sa t
                      @[simp]
                      theorem Multiset.zero_subset {α : Type u_1} (s : Multiset α) :
                      0 s
                      theorem Multiset.subset_cons {α : Type u_1} (s : Multiset α) (a : α) :
                      s a ::ₘ s
                      theorem Multiset.ssubset_cons {α : Type u_1} {s : Multiset α} {a : α} (ha : as) :
                      s a ::ₘ s
                      @[simp]
                      theorem Multiset.cons_subset {α : Type u_1} {a : α} {s t : Multiset α} :
                      a ::ₘ s t a t s t
                      theorem Multiset.cons_subset_cons {α : Type u_1} {a : α} {s t : Multiset α} :
                      s ta ::ₘ s a ::ₘ t
                      theorem Multiset.eq_zero_of_subset_zero {α : Type u_1} {s : Multiset α} (h : s 0) :
                      s = 0
                      @[simp]
                      theorem Multiset.subset_zero {α : Type u_1} {s : Multiset α} :
                      s 0 s = 0
                      @[simp]
                      theorem Multiset.zero_ssubset {α : Type u_1} {s : Multiset α} :
                      0 s s 0
                      @[simp]
                      theorem Multiset.singleton_subset {α : Type u_1} {s : Multiset α} {a : α} :
                      {a} s a s
                      theorem Multiset.induction_on' {α : Type u_1} {p : Multiset αProp} (S : Multiset α) (h₁ : p 0) (h₂ : ∀ {a : α} {s : Multiset α}, a Ss Sp sp (insert a s)) :
                      p S

                      Multiset.toList #

                      noncomputable def Multiset.toList {α : Type u_1} (s : Multiset α) :
                      List α

                      Produces a list of the elements in the multiset using choice.

                      Equations
                      Instances For
                        @[simp]
                        theorem Multiset.coe_toList {α : Type u_1} (s : Multiset α) :
                        s.toList = s
                        @[simp]
                        theorem Multiset.toList_eq_nil {α : Type u_1} {s : Multiset α} :
                        s.toList = [] s = 0
                        theorem Multiset.empty_toList {α : Type u_1} {s : Multiset α} :
                        s.toList.isEmpty = true s = 0
                        @[simp]
                        theorem Multiset.toList_zero {α : Type u_1} :
                        @[simp]
                        theorem Multiset.mem_toList {α : Type u_1} {a : α} {s : Multiset α} :
                        a s.toList a s
                        @[simp]
                        theorem Multiset.toList_eq_singleton_iff {α : Type u_1} {a : α} {m : Multiset α} :
                        m.toList = [a] m = {a}
                        @[simp]
                        theorem Multiset.toList_singleton {α : Type u_1} (a : α) :
                        {a}.toList = [a]

                        Partial order on Multisets #

                        def Multiset.Le {α : Type u_1} (s t : Multiset α) :

                        s ≤ t means that s is a sublist of t (up to permutation). Equivalently, s ≤ t means that count a s ≤ count a t for all a.

                        Equations
                        Instances For
                          instance Multiset.decidableLE {α : Type u_1} [DecidableEq α] :
                          DecidableRel fun (x1 x2 : Multiset α) => x1 x2
                          Equations
                          theorem Multiset.subset_of_le {α : Type u_1} {s t : Multiset α} :
                          s ts t
                          theorem Multiset.Le.subset {α : Type u_1} {s t : Multiset α} :
                          s ts t

                          Alias of Multiset.subset_of_le.

                          theorem Multiset.mem_of_le {α : Type u_1} {s t : Multiset α} {a : α} (h : s t) :
                          a sa t
                          theorem Multiset.not_mem_mono {α : Type u_1} {s t : Multiset α} {a : α} (h : s t) :
                          atas
                          @[simp]
                          theorem Multiset.coe_le {α : Type u_1} {l₁ l₂ : List α} :
                          l₁ l₂ l₁.Subperm l₂
                          theorem Multiset.leInductionOn {α : Type u_1} {C : Multiset αMultiset αProp} {s t : Multiset α} (h : s t) (H : ∀ {l₁ l₂ : List α}, l₁.Sublist l₂C l₁ l₂) :
                          C s t
                          theorem Multiset.zero_le {α : Type u_1} (s : Multiset α) :
                          0 s
                          @[simp]
                          theorem Multiset.bot_eq_zero {α : Type u_1} :
                          = 0

                          This is a rfl and simp version of bot_eq_zero.

                          theorem Multiset.le_zero {α : Type u_1} {s : Multiset α} :
                          s 0 s = 0
                          theorem Multiset.lt_cons_self {α : Type u_1} (s : Multiset α) (a : α) :
                          s < a ::ₘ s
                          theorem Multiset.le_cons_self {α : Type u_1} (s : Multiset α) (a : α) :
                          s a ::ₘ s
                          theorem Multiset.cons_le_cons_iff {α : Type u_1} {s t : Multiset α} (a : α) :
                          a ::ₘ s a ::ₘ t s t
                          theorem Multiset.cons_le_cons {α : Type u_1} {s t : Multiset α} (a : α) :
                          s ta ::ₘ s a ::ₘ t
                          @[simp]
                          theorem Multiset.cons_lt_cons_iff {α : Type u_1} {s t : Multiset α} {a : α} :
                          a ::ₘ s < a ::ₘ t s < t
                          theorem Multiset.cons_lt_cons {α : Type u_1} {s t : Multiset α} (a : α) (h : s < t) :
                          a ::ₘ s < a ::ₘ t
                          theorem Multiset.le_cons_of_not_mem {α : Type u_1} {s t : Multiset α} {a : α} (m : as) :
                          s a ::ₘ t s t
                          theorem Multiset.cons_le_of_not_mem {α : Type u_1} {s t : Multiset α} {a : α} (hs : as) :
                          a ::ₘ s t a t s t
                          @[simp]
                          theorem Multiset.singleton_ne_zero {α : Type u_1} (a : α) :
                          {a} 0
                          @[simp]
                          theorem Multiset.zero_ne_singleton {α : Type u_1} (a : α) :
                          0 {a}
                          @[simp]
                          theorem Multiset.singleton_le {α : Type u_1} {a : α} {s : Multiset α} :
                          {a} s a s
                          @[simp]
                          theorem Multiset.le_singleton {α : Type u_1} {s : Multiset α} {a : α} :
                          s {a} s = 0 s = {a}
                          @[simp]
                          theorem Multiset.lt_singleton {α : Type u_1} {s : Multiset α} {a : α} :
                          s < {a} s = 0
                          @[simp]
                          theorem Multiset.ssubset_singleton_iff {α : Type u_1} {s : Multiset α} {a : α} :
                          s {a} s = 0

                          Additive monoid #

                          def Multiset.add {α : Type u_1} (s₁ s₂ : Multiset α) :

                          The sum of two multisets is the lift of the list append operation. This adds the multiplicities of each element, i.e. count a (s + t) = count a s + count a t.

                          Equations
                          Instances For
                            instance Multiset.instAdd {α : Type u_1} :
                            Equations
                            @[simp]
                            theorem Multiset.coe_add {α : Type u_1} (s t : List α) :
                            s + t = (s ++ t)
                            @[simp]
                            theorem Multiset.singleton_add {α : Type u_1} (a : α) (s : Multiset α) :
                            {a} + s = a ::ₘ s
                            theorem Multiset.add_le_add_iff_left {α : Type u_1} {s t u : Multiset α} :
                            s + t s + u t u
                            theorem Multiset.add_le_add_iff_right {α : Type u_1} {s t u : Multiset α} :
                            s + u t + u s t
                            theorem Multiset.add_le_add_left {α : Type u_1} {s t u : Multiset α} :
                            t us + t s + u

                            Alias of the reverse direction of Multiset.add_le_add_iff_left.

                            theorem Multiset.le_of_add_le_add_left {α : Type u_1} {s t u : Multiset α} :
                            s + t s + ut u

                            Alias of the forward direction of Multiset.add_le_add_iff_left.

                            theorem Multiset.le_of_add_le_add_right {α : Type u_1} {s t u : Multiset α} :
                            s + u t + us t

                            Alias of the forward direction of Multiset.add_le_add_iff_right.

                            theorem Multiset.add_le_add_right {α : Type u_1} {s t u : Multiset α} :
                            s ts + u t + u

                            Alias of the reverse direction of Multiset.add_le_add_iff_right.

                            theorem Multiset.add_comm {α : Type u_1} (s t : Multiset α) :
                            s + t = t + s
                            theorem Multiset.add_assoc {α : Type u_1} (s t u : Multiset α) :
                            s + t + u = s + (t + u)
                            @[simp]
                            theorem Multiset.zero_add {α : Type u_1} (s : Multiset α) :
                            0 + s = s
                            @[simp]
                            theorem Multiset.add_zero {α : Type u_1} (s : Multiset α) :
                            s + 0 = s
                            theorem Multiset.le_add_right {α : Type u_1} (s t : Multiset α) :
                            s s + t
                            theorem Multiset.le_add_left {α : Type u_1} (s t : Multiset α) :
                            s t + s
                            theorem Multiset.subset_add_left {α : Type u_1} {s t : Multiset α} :
                            s s + t
                            theorem Multiset.subset_add_right {α : Type u_1} {s t : Multiset α} :
                            s t + s
                            theorem Multiset.le_iff_exists_add {α : Type u_1} {s t : Multiset α} :
                            s t ∃ (u : Multiset α), t = s + u
                            @[simp]
                            theorem Multiset.cons_add {α : Type u_1} (a : α) (s t : Multiset α) :
                            a ::ₘ s + t = a ::ₘ (s + t)
                            @[simp]
                            theorem Multiset.add_cons {α : Type u_1} (a : α) (s t : Multiset α) :
                            s + a ::ₘ t = a ::ₘ (s + t)
                            @[simp]
                            theorem Multiset.mem_add {α : Type u_1} {a : α} {s t : Multiset α} :
                            a s + t a s a t

                            Cardinality #

                            def Multiset.card {α : Type u_1} :
                            Multiset α

                            The cardinality of a multiset is the sum of the multiplicities of all its elements, or simply the length of the underlying list.

                            Equations
                            Instances For
                              @[simp]
                              theorem Multiset.coe_card {α : Type u_1} (l : List α) :
                              (↑l).card = l.length
                              @[simp]
                              theorem Multiset.length_toList {α : Type u_1} (s : Multiset α) :
                              s.toList.length = s.card
                              @[simp]
                              theorem Multiset.card_zero {α : Type u_1} :
                              @[simp]
                              theorem Multiset.card_add {α : Type u_1} (s t : Multiset α) :
                              (s + t).card = s.card + t.card
                              @[simp]
                              theorem Multiset.card_cons {α : Type u_1} (a : α) (s : Multiset α) :
                              (a ::ₘ s).card = s.card + 1
                              @[simp]
                              theorem Multiset.card_singleton {α : Type u_1} (a : α) :
                              {a}.card = 1
                              theorem Multiset.card_pair {α : Type u_1} (a b : α) :
                              {a, b}.card = 2
                              theorem Multiset.card_eq_one {α : Type u_1} {s : Multiset α} :
                              s.card = 1 ∃ (a : α), s = {a}
                              theorem Multiset.card_le_card {α : Type u_1} {s t : Multiset α} (h : s t) :
                              s.card t.card
                              theorem Multiset.eq_of_le_of_card_le {α : Type u_1} {s t : Multiset α} (h : s t) :
                              t.card s.cards = t
                              theorem Multiset.card_lt_card {α : Type u_1} {s t : Multiset α} (h : s < t) :
                              s.card < t.card
                              theorem Multiset.lt_iff_cons_le {α : Type u_1} {s t : Multiset α} :
                              s < t ∃ (a : α), a ::ₘ s t
                              @[simp]
                              theorem Multiset.card_eq_zero {α : Type u_1} {s : Multiset α} :
                              s.card = 0 s = 0
                              theorem Multiset.card_pos {α : Type u_1} {s : Multiset α} :
                              0 < s.card s 0
                              theorem Multiset.card_pos_iff_exists_mem {α : Type u_1} {s : Multiset α} :
                              0 < s.card ∃ (a : α), a s
                              theorem Multiset.card_eq_two {α : Type u_1} {s : Multiset α} :
                              s.card = 2 ∃ (x : α) (y : α), s = {x, y}
                              theorem Multiset.card_eq_three {α : Type u_1} {s : Multiset α} :
                              s.card = 3 ∃ (x : α) (y : α) (z : α), s = {x, y, z}

                              Induction principles #

                              @[irreducible]
                              def Multiset.strongInductionOn {α : Type u_1} {p : Multiset αSort u_3} (s : Multiset α) (ih : (s : Multiset α) → ((t : Multiset α) → t < sp t)p s) :
                              p s

                              The strong induction principle for multisets.

                              Equations
                              • s.strongInductionOn ih = ih s fun (t : Multiset α) (_h : t < s) => t.strongInductionOn ih
                              Instances For
                                theorem Multiset.strongInductionOn_eq {α : Type u_1} {p : Multiset αSort u_3} (s : Multiset α) (H : (s : Multiset α) → ((t : Multiset α) → t < sp t)p s) :
                                s.strongInductionOn H = H s fun (t : Multiset α) (_h : t < s) => t.strongInductionOn H
                                theorem Multiset.case_strongInductionOn {α : Type u_1} {p : Multiset αProp} (s : Multiset α) (h₀ : p 0) (h₁ : ∀ (a : α) (s : Multiset α), (∀ ts, p t)p (a ::ₘ s)) :
                                p s
                                @[irreducible]
                                def Multiset.strongDownwardInduction {α : Type u_1} {p : Multiset αSort u_3} {n : } (H : (t₁ : Multiset α) → ({t₂ : Multiset α} → t₂.card nt₁ < t₂p t₂)t₁.card np t₁) (s : Multiset α) :
                                s.card np s

                                Suppose that, given that p t can be defined on all supersets of s of cardinality less than n, one knows how to define p s. Then one can inductively define p s for all multisets s of cardinality less than n, starting from multisets of card n and iterating. This can be used either to define data, or to prove properties.

                                Equations
                                Instances For
                                  theorem Multiset.strongDownwardInduction_eq {α : Type u_1} {p : Multiset αSort u_3} {n : } (H : (t₁ : Multiset α) → ({t₂ : Multiset α} → t₂.card nt₁ < t₂p t₂)t₁.card np t₁) (s : Multiset α) :
                                  Multiset.strongDownwardInduction H s = H s fun {t₂ : Multiset α} (ht : t₂.card n) (_hst : s < t₂) => Multiset.strongDownwardInduction H t₂ ht
                                  def Multiset.strongDownwardInductionOn {α : Type u_1} {p : Multiset αSort u_3} {n : } (s : Multiset α) :
                                  ((t₁ : Multiset α) → ({t₂ : Multiset α} → t₂.card nt₁ < t₂p t₂)t₁.card np t₁)s.card np s

                                  Analogue of strongDownwardInduction with order of arguments swapped.

                                  Equations
                                  Instances For
                                    theorem Multiset.strongDownwardInductionOn_eq {α : Type u_1} {p : Multiset αSort u_3} (s : Multiset α) {n : } (H : (t₁ : Multiset α) → ({t₂ : Multiset α} → t₂.card nt₁ < t₂p t₂)t₁.card np t₁) :
                                    (fun (a : s.card n) => s.strongDownwardInductionOn H a) = H s fun {t : Multiset α} (ht : t.card n) (_h : s < t) => t.strongDownwardInductionOn H ht

                                    Another way of expressing strongInductionOn: the (<) relation is well-founded.

                                    Multiset.replicate #

                                    def Multiset.replicate {α : Type u_1} (n : ) (a : α) :

                                    replicate n a is the multiset containing only a with multiplicity n.

                                    Equations
                                    Instances For
                                      theorem Multiset.coe_replicate {α : Type u_1} (n : ) (a : α) :
                                      @[simp]
                                      theorem Multiset.replicate_zero {α : Type u_1} (a : α) :
                                      @[simp]
                                      theorem Multiset.replicate_succ {α : Type u_1} (a : α) (n : ) :
                                      theorem Multiset.replicate_one {α : Type u_1} (a : α) :
                                      @[simp]
                                      theorem Multiset.card_replicate {α : Type u_1} (n : ) (a : α) :
                                      (Multiset.replicate n a).card = n
                                      theorem Multiset.mem_replicate {α : Type u_1} {a b : α} {n : } :
                                      theorem Multiset.eq_of_mem_replicate {α : Type u_1} {a b : α} {n : } :
                                      b Multiset.replicate n ab = a
                                      theorem Multiset.eq_replicate_card {α : Type u_1} {a : α} {s : Multiset α} :
                                      s = Multiset.replicate s.card a bs, b = a
                                      theorem Multiset.eq_replicate_of_mem {α : Type u_1} {a : α} {s : Multiset α} :
                                      (∀ bs, b = a)s = Multiset.replicate s.card a

                                      Alias of the reverse direction of Multiset.eq_replicate_card.

                                      theorem Multiset.eq_replicate {α : Type u_1} {a : α} {n : } {s : Multiset α} :
                                      s = Multiset.replicate n a s.card = n bs, b = a
                                      @[simp]
                                      theorem Multiset.replicate_right_inj {α : Type u_1} {a b : α} {n : } (h : n 0) :
                                      theorem Multiset.replicate_subset_singleton {α : Type u_1} (n : ) (a : α) :
                                      theorem Multiset.replicate_le_coe {α : Type u_1} {a : α} {n : } {l : List α} :
                                      Multiset.replicate n a l (List.replicate n a).Sublist l
                                      theorem Multiset.replicate_mono {α : Type u_1} (a : α) {k n : } (h : k n) :
                                      theorem Multiset.le_replicate_iff {α : Type u_1} {m : Multiset α} {a : α} {n : } :
                                      m Multiset.replicate n a kn, m = Multiset.replicate k a
                                      theorem Multiset.lt_replicate_succ {α : Type u_1} {m : Multiset α} {x : α} {n : } :

                                      Erasing one copy of an element #

                                      def Multiset.erase {α : Type u_1} [DecidableEq α] (s : Multiset α) (a : α) :

                                      erase s a is the multiset that subtracts 1 from the multiplicity of a.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem Multiset.coe_erase {α : Type u_1} [DecidableEq α] (l : List α) (a : α) :
                                        (↑l).erase a = (l.erase a)
                                        @[simp]
                                        theorem Multiset.erase_zero {α : Type u_1} [DecidableEq α] (a : α) :
                                        @[simp]
                                        theorem Multiset.erase_cons_head {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
                                        (a ::ₘ s).erase a = s
                                        @[simp]
                                        theorem Multiset.erase_cons_tail {α : Type u_1} [DecidableEq α] {a b : α} (s : Multiset α) (h : b a) :
                                        (b ::ₘ s).erase a = b ::ₘ s.erase a
                                        @[simp]
                                        theorem Multiset.erase_singleton {α : Type u_1} [DecidableEq α] (a : α) :
                                        {a}.erase a = 0
                                        @[simp]
                                        theorem Multiset.erase_of_not_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                        ass.erase a = s
                                        @[simp]
                                        theorem Multiset.cons_erase {α : Type u_1} [DecidableEq α] {s : Multiset α} {a : α} :
                                        a sa ::ₘ s.erase a = s
                                        theorem Multiset.erase_cons_tail_of_mem {α : Type u_1} [DecidableEq α] {s : Multiset α} {a b : α} (h : a s) :
                                        (b ::ₘ s).erase a = b ::ₘ s.erase a
                                        theorem Multiset.le_cons_erase {α : Type u_1} [DecidableEq α] (s : Multiset α) (a : α) :
                                        s a ::ₘ s.erase a
                                        theorem Multiset.add_singleton_eq_iff {α : Type u_1} [DecidableEq α] {s t : Multiset α} {a : α} :
                                        s + {a} = t a t s = t.erase a
                                        theorem Multiset.erase_add_left_pos {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} (t : Multiset α) :
                                        a s(s + t).erase a = s.erase a + t
                                        theorem Multiset.erase_add_right_pos {α : Type u_1} [DecidableEq α] {t : Multiset α} {a : α} (s : Multiset α) (h : a t) :
                                        (s + t).erase a = s + t.erase a
                                        theorem Multiset.erase_add_right_neg {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} (t : Multiset α) :
                                        as(s + t).erase a = s + t.erase a
                                        theorem Multiset.erase_add_left_neg {α : Type u_1} [DecidableEq α] {t : Multiset α} {a : α} (s : Multiset α) (h : at) :
                                        (s + t).erase a = s.erase a + t
                                        theorem Multiset.erase_le {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
                                        s.erase a s
                                        @[simp]
                                        theorem Multiset.erase_lt {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                        s.erase a < s a s
                                        theorem Multiset.erase_subset {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
                                        s.erase a s
                                        theorem Multiset.mem_erase_of_ne {α : Type u_1} [DecidableEq α] {a b : α} {s : Multiset α} (ab : a b) :
                                        a s.erase b a s
                                        theorem Multiset.mem_of_mem_erase {α : Type u_1} [DecidableEq α] {a b : α} {s : Multiset α} :
                                        a s.erase ba s
                                        theorem Multiset.erase_comm {α : Type u_1} [DecidableEq α] (s : Multiset α) (a b : α) :
                                        (s.erase a).erase b = (s.erase b).erase a
                                        theorem Multiset.erase_le_erase {α : Type u_1} [DecidableEq α] {s t : Multiset α} (a : α) (h : s t) :
                                        s.erase a t.erase a
                                        theorem Multiset.erase_le_iff_le_cons {α : Type u_1} [DecidableEq α] {s t : Multiset α} {a : α} :
                                        s.erase a t s a ::ₘ t
                                        @[simp]
                                        theorem Multiset.card_erase_of_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                        a s(s.erase a).card = s.card.pred
                                        @[simp]
                                        theorem Multiset.card_erase_add_one {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                        a s(s.erase a).card + 1 = s.card
                                        theorem Multiset.card_erase_lt_of_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                        a s(s.erase a).card < s.card
                                        theorem Multiset.card_erase_le {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                        (s.erase a).card s.card
                                        theorem Multiset.card_erase_eq_ite {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                        (s.erase a).card = if a s then s.card.pred else s.card
                                        @[simp]
                                        theorem Multiset.coe_reverse {α : Type u_1} (l : List α) :
                                        l.reverse = l

                                        Multiset.map #

                                        def Multiset.map {α : Type u_1} {β : Type v} (f : αβ) (s : Multiset α) :

                                        map f s is the lift of the list map operation. The multiplicity of b in map f s is the number of a ∈ s (counting multiplicity) such that f a = b.

                                        Equations
                                        Instances For
                                          theorem Multiset.map_congr {α : Type u_1} {β : Type v} {f g : αβ} {s t : Multiset α} :
                                          s = t(∀ xt, f x = g x)Multiset.map f s = Multiset.map g t
                                          theorem Multiset.map_hcongr {α : Type u_1} {β β' : Type v} {m : Multiset α} {f : αβ} {f' : αβ'} (h : β = β') (hf : am, HEq (f a) (f' a)) :
                                          theorem Multiset.forall_mem_map_iff {α : Type u_1} {β : Type v} {f : αβ} {p : βProp} {s : Multiset α} :
                                          (∀ yMultiset.map f s, p y) xs, p (f x)
                                          @[simp]
                                          theorem Multiset.map_coe {α : Type u_1} {β : Type v} (f : αβ) (l : List α) :
                                          Multiset.map f l = (List.map f l)
                                          @[simp]
                                          theorem Multiset.map_zero {α : Type u_1} {β : Type v} (f : αβ) :
                                          @[simp]
                                          theorem Multiset.map_cons {α : Type u_1} {β : Type v} (f : αβ) (a : α) (s : Multiset α) :
                                          theorem Multiset.map_comp_cons {α : Type u_1} {β : Type v} (f : αβ) (t : α) :
                                          @[simp]
                                          theorem Multiset.map_singleton {α : Type u_1} {β : Type v} (f : αβ) (a : α) :
                                          Multiset.map f {a} = {f a}
                                          @[simp]
                                          theorem Multiset.map_replicate {α : Type u_1} {β : Type v} (f : αβ) (k : ) (a : α) :
                                          @[simp]
                                          theorem Multiset.map_add {α : Type u_1} {β : Type v} (f : αβ) (s t : Multiset α) :
                                          instance Multiset.canLift {α : Type u_1} {β : Type v} (c : βα) (p : αProp) [CanLift α β c p] :
                                          CanLift (Multiset α) (Multiset β) (Multiset.map c) fun (s : Multiset α) => xs, p x

                                          If each element of s : Multiset α can be lifted to β, then s can be lifted to Multiset β.

                                          @[simp]
                                          theorem Multiset.mem_map {α : Type u_1} {β : Type v} {f : αβ} {b : β} {s : Multiset α} :
                                          b Multiset.map f s as, f a = b
                                          @[simp]
                                          theorem Multiset.card_map {α : Type u_1} {β : Type v} (f : αβ) (s : Multiset α) :
                                          (Multiset.map f s).card = s.card
                                          @[simp]
                                          theorem Multiset.map_eq_zero {α : Type u_1} {β : Type v} {s : Multiset α} {f : αβ} :
                                          Multiset.map f s = 0 s = 0
                                          theorem Multiset.mem_map_of_mem {α : Type u_1} {β : Type v} (f : αβ) {a : α} {s : Multiset α} (h : a s) :
                                          theorem Multiset.map_eq_singleton {α : Type u_1} {β : Type v} {f : αβ} {s : Multiset α} {b : β} :
                                          Multiset.map f s = {b} ∃ (a : α), s = {a} f a = b
                                          theorem Multiset.map_eq_cons {α : Type u_1} {β : Type v} [DecidableEq α] (f : αβ) (s : Multiset α) (t : Multiset β) (b : β) :
                                          (∃ as, f a = b Multiset.map f (s.erase a) = t) Multiset.map f s = b ::ₘ t
                                          @[simp]
                                          theorem Multiset.mem_map_of_injective {α : Type u_1} {β : Type v} {f : αβ} (H : Function.Injective f) {a : α} {s : Multiset α} :
                                          f a Multiset.map f s a s
                                          @[simp]
                                          theorem Multiset.map_map {α : Type u_1} {β : Type v} {γ : Type u_2} (g : βγ) (f : αβ) (s : Multiset α) :
                                          theorem Multiset.map_id {α : Type u_1} (s : Multiset α) :
                                          @[simp]
                                          theorem Multiset.map_id' {α : Type u_1} (s : Multiset α) :
                                          Multiset.map (fun (x : α) => x) s = s
                                          theorem Multiset.map_const {α : Type u_1} {β : Type v} (s : Multiset α) (b : β) :
                                          @[simp]
                                          theorem Multiset.map_const' {α : Type u_1} {β : Type v} (s : Multiset α) (b : β) :
                                          Multiset.map (fun (x : α) => b) s = Multiset.replicate s.card b
                                          theorem Multiset.eq_of_mem_map_const {α : Type u_1} {β : Type v} {b₁ b₂ : β} {l : List α} (h : b₁ Multiset.map (Function.const α b₂) l) :
                                          b₁ = b₂
                                          @[simp]
                                          theorem Multiset.map_le_map {α : Type u_1} {β : Type v} {f : αβ} {s t : Multiset α} (h : s t) :
                                          @[simp]
                                          theorem Multiset.map_lt_map {α : Type u_1} {β : Type v} {f : αβ} {s t : Multiset α} (h : s < t) :
                                          theorem Multiset.map_mono {α : Type u_1} {β : Type v} (f : αβ) :
                                          theorem Multiset.map_strictMono {α : Type u_1} {β : Type v} (f : αβ) :
                                          @[simp]
                                          theorem Multiset.map_subset_map {α : Type u_1} {β : Type v} {f : αβ} {s t : Multiset α} (H : s t) :
                                          theorem Multiset.map_erase {α : Type u_1} {β : Type v} [DecidableEq α] [DecidableEq β] (f : αβ) (hf : Function.Injective f) (x : α) (s : Multiset α) :
                                          Multiset.map f (s.erase x) = (Multiset.map f s).erase (f x)
                                          theorem Multiset.map_erase_of_mem {α : Type u_1} {β : Type v} [DecidableEq α] [DecidableEq β] (f : αβ) (s : Multiset α) {x : α} (h : x s) :
                                          Multiset.map f (s.erase x) = (Multiset.map f s).erase (f x)

                                          Multiset.fold #

                                          def Multiset.foldl {α : Type u_1} {β : Type v} (f : βαβ) [RightCommutative f] (b : β) (s : Multiset α) :
                                          β

                                          foldl f H b s is the lift of the list operation foldl f b l, which folds f over the multiset. It is well defined when f is right-commutative, that is, f (f b a₁) a₂ = f (f b a₂) a₁.

                                          Equations
                                          Instances For
                                            @[simp]
                                            theorem Multiset.foldl_zero {α : Type u_1} {β : Type v} (f : βαβ) [RightCommutative f] (b : β) :
                                            @[simp]
                                            theorem Multiset.foldl_cons {α : Type u_1} {β : Type v} (f : βαβ) [RightCommutative f] (b : β) (a : α) (s : Multiset α) :
                                            Multiset.foldl f b (a ::ₘ s) = Multiset.foldl f (f b a) s
                                            @[simp]
                                            theorem Multiset.foldl_add {α : Type u_1} {β : Type v} (f : βαβ) [RightCommutative f] (b : β) (s t : Multiset α) :
                                            def Multiset.foldr {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (b : β) (s : Multiset α) :
                                            β

                                            foldr f H b s is the lift of the list operation foldr f b l, which folds f over the multiset. It is well defined when f is left-commutative, that is, f a₁ (f a₂ b) = f a₂ (f a₁ b).

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem Multiset.foldr_zero {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (b : β) :
                                              @[simp]
                                              theorem Multiset.foldr_cons {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (b : β) (a : α) (s : Multiset α) :
                                              Multiset.foldr f b (a ::ₘ s) = f a (Multiset.foldr f b s)
                                              @[simp]
                                              theorem Multiset.foldr_singleton {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (b : β) (a : α) :
                                              Multiset.foldr f b {a} = f a b
                                              @[simp]
                                              theorem Multiset.foldr_add {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (b : β) (s t : Multiset α) :
                                              @[simp]
                                              theorem Multiset.coe_foldr {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (b : β) (l : List α) :
                                              Multiset.foldr f b l = List.foldr f b l
                                              @[simp]
                                              theorem Multiset.coe_foldl {α : Type u_1} {β : Type v} (f : βαβ) [RightCommutative f] (b : β) (l : List α) :
                                              Multiset.foldl f b l = List.foldl f b l
                                              theorem Multiset.coe_foldr_swap {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (b : β) (l : List α) :
                                              Multiset.foldr f b l = List.foldl (fun (x : β) (y : α) => f y x) b l
                                              theorem Multiset.foldr_swap {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (b : β) (s : Multiset α) :
                                              Multiset.foldr f b s = Multiset.foldl (fun (x : β) (y : α) => f y x) b s
                                              theorem Multiset.foldl_swap {α : Type u_1} {β : Type v} (f : βαβ) [RightCommutative f] (b : β) (s : Multiset α) :
                                              Multiset.foldl f b s = Multiset.foldr (fun (x : α) (y : β) => f y x) b s
                                              theorem Multiset.foldr_induction' {α : Type u_1} {β : Type v} (f : αββ) [LeftCommutative f] (x : β) (q : αProp) (p : βProp) (s : Multiset α) (hpqf : ∀ (a : α) (b : β), q ap bp (f a b)) (px : p x) (q_s : as, q a) :
                                              p (Multiset.foldr f x s)
                                              theorem Multiset.foldr_induction {α : Type u_1} (f : ααα) [LeftCommutative f] (x : α) (p : αProp) (s : Multiset α) (p_f : ∀ (a b : α), p ap bp (f a b)) (px : p x) (p_s : as, p a) :
                                              p (Multiset.foldr f x s)
                                              theorem Multiset.foldl_induction' {α : Type u_1} {β : Type v} (f : βαβ) [RightCommutative f] (x : β) (q : αProp) (p : βProp) (s : Multiset α) (hpqf : ∀ (a : α) (b : β), q ap bp (f b a)) (px : p x) (q_s : as, q a) :
                                              p (Multiset.foldl f x s)
                                              theorem Multiset.foldl_induction {α : Type u_1} (f : ααα) [RightCommutative f] (x : α) (p : αProp) (s : Multiset α) (p_f : ∀ (a b : α), p ap bp (f b a)) (px : p x) (p_s : as, p a) :
                                              p (Multiset.foldl f x s)

                                              Map for partial functions #

                                              def Multiset.pmap {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (s : Multiset α) :
                                              (∀ as, p a)Multiset β

                                              Lift of the list pmap operation. Map a partial function f over a multiset s whose elements are all in the domain of f.

                                              Equations
                                              Instances For
                                                @[simp]
                                                theorem Multiset.coe_pmap {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (l : List α) (H : al, p a) :
                                                Multiset.pmap f (↑l) H = (List.pmap f l H)
                                                @[simp]
                                                theorem Multiset.pmap_zero {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (h : a0, p a) :
                                                @[simp]
                                                theorem Multiset.pmap_cons {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (a : α) (m : Multiset α) (h : ba ::ₘ m, p b) :
                                                Multiset.pmap f (a ::ₘ m) h = f a ::ₘ Multiset.pmap f m
                                                def Multiset.attach {α : Type u_1} (s : Multiset α) :
                                                Multiset { x : α // x s }

                                                "Attach" a proof that a ∈ s to each element a in s to produce a multiset on {x // x ∈ s}.

                                                Equations
                                                Instances For
                                                  @[simp]
                                                  theorem Multiset.coe_attach {α : Type u_1} (l : List α) :
                                                  (↑l).attach = l.attach
                                                  theorem Multiset.sizeOf_lt_sizeOf_of_mem {α : Type u_1} [SizeOf α] {x : α} {s : Multiset α} (hx : x s) :
                                                  theorem Multiset.pmap_eq_map {α : Type u_1} {β : Type v} (p : αProp) (f : αβ) (s : Multiset α) (H : as, p a) :
                                                  Multiset.pmap (fun (a : α) (x : p a) => f a) s H = Multiset.map f s
                                                  theorem Multiset.pmap_congr {α : Type u_1} {β : Type v} {p q : αProp} {f : (a : α) → p aβ} {g : (a : α) → q aβ} (s : Multiset α) {H₁ : as, p a} {H₂ : as, q a} :
                                                  (∀ as, ∀ (h₁ : p a) (h₂ : q a), f a h₁ = g a h₂)Multiset.pmap f s H₁ = Multiset.pmap g s H₂
                                                  theorem Multiset.map_pmap {α : Type u_1} {β : Type v} {γ : Type u_2} {p : αProp} (g : βγ) (f : (a : α) → p aβ) (s : Multiset α) (H : as, p a) :
                                                  Multiset.map g (Multiset.pmap f s H) = Multiset.pmap (fun (a : α) (h : p a) => g (f a h)) s H
                                                  theorem Multiset.pmap_eq_map_attach {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (s : Multiset α) (H : as, p a) :
                                                  Multiset.pmap f s H = Multiset.map (fun (x : { x : α // x s }) => f x ) s.attach
                                                  theorem Multiset.attach_map_val' {α : Type u_1} {β : Type v} (s : Multiset α) (f : αβ) :
                                                  Multiset.map (fun (i : { x : α // x s }) => f i) s.attach = Multiset.map f s
                                                  @[simp]
                                                  theorem Multiset.attach_map_val {α : Type u_1} (s : Multiset α) :
                                                  @[simp]
                                                  theorem Multiset.mem_attach {α : Type u_1} (s : Multiset α) (x : { x : α // x s }) :
                                                  x s.attach
                                                  @[simp]
                                                  theorem Multiset.mem_pmap {α : Type u_1} {β : Type v} {p : αProp} {f : (a : α) → p aβ} {s : Multiset α} {H : as, p a} {b : β} :
                                                  b Multiset.pmap f s H ∃ (a : α) (h : a s), f a = b
                                                  @[simp]
                                                  theorem Multiset.card_pmap {α : Type u_1} {β : Type v} {p : αProp} (f : (a : α) → p aβ) (s : Multiset α) (H : as, p a) :
                                                  (Multiset.pmap f s H).card = s.card
                                                  @[simp]
                                                  theorem Multiset.card_attach {α : Type u_1} {m : Multiset α} :
                                                  m.attach.card = m.card
                                                  @[simp]
                                                  theorem Multiset.attach_zero {α : Type u_1} :
                                                  theorem Multiset.attach_cons {α : Type u_1} (a : α) (m : Multiset α) :
                                                  (a ::ₘ m).attach = a, ::ₘ Multiset.map (fun (p : { x : α // x m }) => p, ) m.attach
                                                  def Multiset.decidableForallMultiset {α : Type u_1} {m : Multiset α} {p : αProp} [(a : α) → Decidable (p a)] :
                                                  Decidable (∀ am, p a)

                                                  If p is a decidable predicate, so is the predicate that all elements of a multiset satisfy p.

                                                  Equations
                                                  Instances For
                                                    instance Multiset.decidableDforallMultiset {α : Type u_1} {m : Multiset α} {p : (a : α) → a mProp} [_hp : (a : α) → (h : a m) → Decidable (p a h)] :
                                                    Decidable (∀ (a : α) (h : a m), p a h)
                                                    Equations
                                                    instance Multiset.decidableEqPiMultiset {α : Type u_1} {m : Multiset α} {β : αType u_3} [(a : α) → DecidableEq (β a)] :
                                                    DecidableEq ((a : α) → a mβ a)

                                                    decidable equality for functions whose domain is bounded by multisets

                                                    Equations
                                                    def Multiset.decidableExistsMultiset {α : Type u_1} {m : Multiset α} {p : αProp} [DecidablePred p] :
                                                    Decidable (∃ xm, p x)

                                                    If p is a decidable predicate, so is the existence of an element in a multiset satisfying p.

                                                    Equations
                                                    Instances For
                                                      instance Multiset.decidableDexistsMultiset {α : Type u_1} {m : Multiset α} {p : (a : α) → a mProp} [_hp : (a : α) → (h : a m) → Decidable (p a h)] :
                                                      Decidable (∃ (a : α) (h : a m), p a h)
                                                      Equations

                                                      Multiset.filter #

                                                      def Multiset.filter {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :

                                                      Filter p s returns the elements in s (with the same multiplicities) which satisfy p, and removes the rest.

                                                      Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem Multiset.filter_coe {α : Type u_1} (p : αProp) [DecidablePred p] (l : List α) :
                                                        Multiset.filter p l = (List.filter (fun (b : α) => decide (p b)) l)
                                                        @[simp]
                                                        theorem Multiset.filter_zero {α : Type u_1} (p : αProp) [DecidablePred p] :
                                                        theorem Multiset.filter_congr {α : Type u_1} {p q : αProp} [DecidablePred p] [DecidablePred q] {s : Multiset α} :
                                                        (∀ xs, p x q x)Multiset.filter p s = Multiset.filter q s
                                                        @[simp]
                                                        theorem Multiset.filter_add {α : Type u_1} (p : αProp) [DecidablePred p] (s t : Multiset α) :
                                                        @[simp]
                                                        theorem Multiset.filter_le {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :
                                                        @[simp]
                                                        theorem Multiset.filter_subset {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :
                                                        theorem Multiset.filter_le_filter {α : Type u_1} (p : αProp) [DecidablePred p] {s t : Multiset α} (h : s t) :
                                                        theorem Multiset.monotone_filter_right {α : Type u_1} (s : Multiset α) ⦃p q : αProp [DecidablePred p] [DecidablePred q] (h : ∀ (b : α), p bq b) :
                                                        @[simp]
                                                        theorem Multiset.filter_cons_of_pos {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} (s : Multiset α) :
                                                        @[simp]
                                                        theorem Multiset.filter_cons_of_neg {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} (s : Multiset α) :
                                                        @[simp]
                                                        theorem Multiset.mem_filter {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} {s : Multiset α} :
                                                        a Multiset.filter p s a s p a
                                                        theorem Multiset.of_mem_filter {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} {s : Multiset α} (h : a Multiset.filter p s) :
                                                        p a
                                                        theorem Multiset.mem_of_mem_filter {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} {s : Multiset α} (h : a Multiset.filter p s) :
                                                        a s
                                                        theorem Multiset.mem_filter_of_mem {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} {l : Multiset α} (m : a l) (h : p a) :
                                                        theorem Multiset.filter_eq_self {α : Type u_1} {p : αProp} [DecidablePred p] {s : Multiset α} :
                                                        Multiset.filter p s = s as, p a
                                                        theorem Multiset.filter_eq_nil {α : Type u_1} {p : αProp} [DecidablePred p] {s : Multiset α} :
                                                        Multiset.filter p s = 0 as, ¬p a
                                                        theorem Multiset.le_filter {α : Type u_1} {p : αProp} [DecidablePred p] {s t : Multiset α} :
                                                        s Multiset.filter p t s t as, p a
                                                        theorem Multiset.filter_cons {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} (s : Multiset α) :
                                                        Multiset.filter p (a ::ₘ s) = (if p a then {a} else 0) + Multiset.filter p s
                                                        theorem Multiset.filter_singleton {α : Type u_1} {a : α} (p : αProp) [DecidablePred p] :
                                                        Multiset.filter p {a} = if p a then {a} else
                                                        @[simp]
                                                        theorem Multiset.filter_filter {α : Type u_1} (p : αProp) [DecidablePred p] (q : αProp) [DecidablePred q] (s : Multiset α) :
                                                        Multiset.filter p (Multiset.filter q s) = Multiset.filter (fun (a : α) => p a q a) s
                                                        theorem Multiset.filter_comm {α : Type u_1} (p : αProp) [DecidablePred p] (q : αProp) [DecidablePred q] (s : Multiset α) :
                                                        theorem Multiset.filter_add_filter {α : Type u_1} (p : αProp) [DecidablePred p] (q : αProp) [DecidablePred q] (s : Multiset α) :
                                                        Multiset.filter p s + Multiset.filter q s = Multiset.filter (fun (a : α) => p a q a) s + Multiset.filter (fun (a : α) => p a q a) s
                                                        theorem Multiset.filter_add_not {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :
                                                        Multiset.filter p s + Multiset.filter (fun (a : α) => ¬p a) s = s
                                                        theorem Multiset.filter_map {α : Type u_1} {β : Type v} (p : αProp) [DecidablePred p] (f : βα) (s : Multiset β) :
                                                        @[deprecated Multiset.filter_map (since := "2024-06-16")]
                                                        theorem Multiset.map_filter {α : Type u_1} {β : Type v} (p : αProp) [DecidablePred p] (f : βα) (s : Multiset β) :

                                                        Alias of Multiset.filter_map.

                                                        theorem Multiset.map_filter' {α : Type u_1} {β : Type v} (p : αProp) [DecidablePred p] {f : αβ} (hf : Function.Injective f) (s : Multiset α) [DecidablePred fun (b : β) => ∃ (a : α), p a f a = b] :
                                                        Multiset.map f (Multiset.filter p s) = Multiset.filter (fun (b : β) => ∃ (a : α), p a f a = b) (Multiset.map f s)
                                                        theorem Multiset.card_filter_le_iff {α : Type u_1} (s : Multiset α) (P : αProp) [DecidablePred P] (n : ) :
                                                        (Multiset.filter P s).card n s's, n < s'.cardas', ¬P a

                                                        Simultaneously filter and map elements of a multiset #

                                                        def Multiset.filterMap {α : Type u_1} {β : Type v} (f : αOption β) (s : Multiset α) :

                                                        filterMap f s is a combination filter/map operation on s. The function f : α → Option β is applied to each element of s; if f a is some b then b is added to the result, otherwise a is removed from the resulting multiset.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem Multiset.filterMap_coe {α : Type u_1} {β : Type v} (f : αOption β) (l : List α) :
                                                          @[simp]
                                                          theorem Multiset.filterMap_zero {α : Type u_1} {β : Type v} (f : αOption β) :
                                                          @[simp]
                                                          theorem Multiset.filterMap_cons_none {α : Type u_1} {β : Type v} {f : αOption β} (a : α) (s : Multiset α) (h : f a = none) :
                                                          @[simp]
                                                          theorem Multiset.filterMap_cons_some {α : Type u_1} {β : Type v} (f : αOption β) (a : α) (s : Multiset α) {b : β} (h : f a = some b) :
                                                          theorem Multiset.filterMap_eq_map {α : Type u_1} {β : Type v} (f : αβ) :
                                                          theorem Multiset.filterMap_filterMap {α : Type u_1} {β : Type v} {γ : Type u_2} (f : αOption β) (g : βOption γ) (s : Multiset α) :
                                                          Multiset.filterMap g (Multiset.filterMap f s) = Multiset.filterMap (fun (x : α) => (f x).bind g) s
                                                          theorem Multiset.map_filterMap {α : Type u_1} {β : Type v} {γ : Type u_2} (f : αOption β) (g : βγ) (s : Multiset α) :
                                                          Multiset.map g (Multiset.filterMap f s) = Multiset.filterMap (fun (x : α) => Option.map g (f x)) s
                                                          theorem Multiset.filterMap_map {α : Type u_1} {β : Type v} {γ : Type u_2} (f : αβ) (g : βOption γ) (s : Multiset α) :
                                                          theorem Multiset.filter_filterMap {α : Type u_1} {β : Type v} (f : αOption β) (p : βProp) [DecidablePred p] (s : Multiset α) :
                                                          Multiset.filter p (Multiset.filterMap f s) = Multiset.filterMap (fun (x : α) => Option.filter (fun (b : β) => decide (p b)) (f x)) s
                                                          theorem Multiset.filterMap_filter {α : Type u_1} {β : Type v} (p : αProp) [DecidablePred p] (f : αOption β) (s : Multiset α) :
                                                          Multiset.filterMap f (Multiset.filter p s) = Multiset.filterMap (fun (x : α) => if p x then f x else none) s
                                                          @[simp]
                                                          @[simp]
                                                          theorem Multiset.mem_filterMap {α : Type u_1} {β : Type v} (f : αOption β) (s : Multiset α) {b : β} :
                                                          b Multiset.filterMap f s as, f a = some b
                                                          theorem Multiset.map_filterMap_of_inv {α : Type u_1} {β : Type v} (f : αOption β) (g : βα) (H : ∀ (x : α), Option.map g (f x) = some x) (s : Multiset α) :
                                                          theorem Multiset.filterMap_le_filterMap {α : Type u_1} {β : Type v} (f : αOption β) {s t : Multiset α} (h : s t) :

                                                          countP #

                                                          def Multiset.countP {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :

                                                          countP p s counts the number of elements of s (with multiplicity) that satisfy p.

                                                          Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem Multiset.coe_countP {α : Type u_1} (p : αProp) [DecidablePred p] (l : List α) :
                                                            Multiset.countP p l = List.countP (fun (b : α) => decide (p b)) l
                                                            @[simp]
                                                            theorem Multiset.countP_zero {α : Type u_1} (p : αProp) [DecidablePred p] :
                                                            @[simp]
                                                            theorem Multiset.countP_cons_of_pos {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} (s : Multiset α) :
                                                            p aMultiset.countP p (a ::ₘ s) = Multiset.countP p s + 1
                                                            @[simp]
                                                            theorem Multiset.countP_cons_of_neg {α : Type u_1} {p : αProp} [DecidablePred p] {a : α} (s : Multiset α) :
                                                            theorem Multiset.countP_cons {α : Type u_1} (p : αProp) [DecidablePred p] (b : α) (s : Multiset α) :
                                                            Multiset.countP p (b ::ₘ s) = Multiset.countP p s + if p b then 1 else 0
                                                            theorem Multiset.countP_eq_card_filter {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :
                                                            theorem Multiset.countP_le_card {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :
                                                            Multiset.countP p s s.card
                                                            @[simp]
                                                            theorem Multiset.countP_add {α : Type u_1} (p : αProp) [DecidablePred p] (s t : Multiset α) :
                                                            theorem Multiset.card_eq_countP_add_countP {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :
                                                            s.card = Multiset.countP p s + Multiset.countP (fun (x : α) => ¬p x) s
                                                            theorem Multiset.countP_le_of_le {α : Type u_1} (p : αProp) [DecidablePred p] {s t : Multiset α} (h : s t) :
                                                            @[simp]
                                                            theorem Multiset.countP_filter {α : Type u_1} (p : αProp) [DecidablePred p] (q : αProp) [DecidablePred q] (s : Multiset α) :
                                                            Multiset.countP p (Multiset.filter q s) = Multiset.countP (fun (a : α) => p a q a) s
                                                            @[simp]
                                                            theorem Multiset.countP_True {α : Type u_1} {s : Multiset α} :
                                                            Multiset.countP (fun (x : α) => True) s = s.card
                                                            @[simp]
                                                            theorem Multiset.countP_False {α : Type u_1} {s : Multiset α} :
                                                            Multiset.countP (fun (x : α) => False) s = 0
                                                            theorem Multiset.countP_map {α : Type u_1} {β : Type v} (f : αβ) (s : Multiset α) (p : βProp) [DecidablePred p] :
                                                            Multiset.countP p (Multiset.map f s) = (Multiset.filter (fun (a : α) => p (f a)) s).card
                                                            theorem Multiset.countP_attach {α : Type u_1} (p : αProp) [DecidablePred p] (s : Multiset α) :
                                                            Multiset.countP (fun (a : { a : α // a s }) => p a) s.attach = Multiset.countP p s
                                                            theorem Multiset.filter_attach {α : Type u_1} (s : Multiset α) (p : αProp) [DecidablePred p] :
                                                            Multiset.filter (fun (a : { a : α // a s }) => p a) s.attach = Multiset.map (Subtype.map id ) (Multiset.filter p s).attach
                                                            theorem Multiset.countP_pos {α : Type u_1} {p : αProp} [DecidablePred p] {s : Multiset α} :
                                                            0 < Multiset.countP p s as, p a
                                                            theorem Multiset.countP_eq_zero {α : Type u_1} {p : αProp} [DecidablePred p] {s : Multiset α} :
                                                            Multiset.countP p s = 0 as, ¬p a
                                                            theorem Multiset.countP_eq_card {α : Type u_1} {p : αProp} [DecidablePred p] {s : Multiset α} :
                                                            Multiset.countP p s = s.card as, p a
                                                            theorem Multiset.countP_pos_of_mem {α : Type u_1} {p : αProp} [DecidablePred p] {s : Multiset α} {a : α} (h : a s) (pa : p a) :
                                                            theorem Multiset.countP_congr {α : Type u_1} {s s' : Multiset α} (hs : s = s') {p p' : αProp} [DecidablePred p] [DecidablePred p'] (hp : xs, p x = p' x) :

                                                            Multiplicity of an element #

                                                            def Multiset.count {α : Type u_1} [DecidableEq α] (a : α) :
                                                            Multiset α

                                                            count a s is the multiplicity of a in s.

                                                            Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem Multiset.coe_count {α : Type u_1} [DecidableEq α] (a : α) (l : List α) :
                                                              @[simp]
                                                              theorem Multiset.count_zero {α : Type u_1} [DecidableEq α] (a : α) :
                                                              @[simp]
                                                              theorem Multiset.count_cons_self {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
                                                              @[simp]
                                                              theorem Multiset.count_cons_of_ne {α : Type u_1} [DecidableEq α] {a b : α} (h : a b) (s : Multiset α) :
                                                              theorem Multiset.count_le_card {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
                                                              Multiset.count a s s.card
                                                              theorem Multiset.count_le_of_le {α : Type u_1} [DecidableEq α] (a : α) {s t : Multiset α} :
                                                              theorem Multiset.count_le_count_cons {α : Type u_1} [DecidableEq α] (a b : α) (s : Multiset α) :
                                                              theorem Multiset.count_cons {α : Type u_1} [DecidableEq α] (a b : α) (s : Multiset α) :
                                                              Multiset.count a (b ::ₘ s) = Multiset.count a s + if a = b then 1 else 0
                                                              theorem Multiset.count_singleton_self {α : Type u_1} [DecidableEq α] (a : α) :
                                                              theorem Multiset.count_singleton {α : Type u_1} [DecidableEq α] (a b : α) :
                                                              Multiset.count a {b} = if a = b then 1 else 0
                                                              @[simp]
                                                              theorem Multiset.count_add {α : Type u_1} [DecidableEq α] (a : α) (s t : Multiset α) :
                                                              @[simp]
                                                              theorem Multiset.count_attach {α : Type u_1} [DecidableEq α] {s : Multiset α} (a : { x : α // x s }) :
                                                              Multiset.count a s.attach = Multiset.count (↑a) s
                                                              theorem Multiset.count_pos {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                                              theorem Multiset.one_le_count_iff_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                                              @[simp]
                                                              theorem Multiset.count_eq_zero_of_not_mem {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} (h : as) :
                                                              theorem Multiset.count_ne_zero {α : Type u_1} [DecidableEq α] {s : Multiset α} {a : α} :
                                                              @[simp]
                                                              theorem Multiset.count_eq_zero {α : Type u_1} [DecidableEq α] {s : Multiset α} {a : α} :
                                                              Multiset.count a s = 0 as
                                                              theorem Multiset.count_eq_card {α : Type u_1} [DecidableEq α] {a : α} {s : Multiset α} :
                                                              Multiset.count a s = s.card xs, a = x
                                                              @[simp]
                                                              theorem Multiset.count_replicate_self {α : Type u_1} [DecidableEq α] (a : α) (n : ) :
                                                              theorem Multiset.count_replicate {α : Type u_1} [DecidableEq α] (a b : α) (n : ) :
                                                              Multiset.count a (Multiset.replicate n b) = if b = a then n else 0
                                                              @[simp]
                                                              theorem Multiset.count_erase_self {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
                                                              Multiset.count a (s.erase a) = Multiset.count a s - 1
                                                              @[simp]
                                                              theorem Multiset.count_erase_of_ne {α : Type u_1} [DecidableEq α] {a b : α} (ab : a b) (s : Multiset α) :
                                                              Multiset.count a (s.erase b) = Multiset.count a s
                                                              @[simp]
                                                              theorem Multiset.count_filter_of_pos {α : Type u_1} [DecidableEq α] {p : αProp} [DecidablePred p] {a : α} {s : Multiset α} (h : p a) :
                                                              @[simp]
                                                              theorem Multiset.count_filter_of_neg {α : Type u_1} [DecidableEq α] {p : αProp} [DecidablePred p] {a : α} {s : Multiset α} (h : ¬p a) :
                                                              theorem Multiset.count_filter {α : Type u_1} [DecidableEq α] {p : αProp} [DecidablePred p] {a : α} {s : Multiset α} :
                                                              Multiset.count a (Multiset.filter p s) = if p a then Multiset.count a s else 0
                                                              theorem Multiset.ext {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                              s = t ∀ (a : α), Multiset.count a s = Multiset.count a t
                                                              theorem Multiset.ext' {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                              (∀ (a : α), Multiset.count a s = Multiset.count a t)s = t
                                                              theorem Multiset.count_injective {α : Type u_1} [DecidableEq α] :
                                                              Function.Injective fun (s : Multiset α) (a : α) => Multiset.count a s
                                                              theorem Multiset.le_iff_count {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                              s t ∀ (a : α), Multiset.count a s Multiset.count a t
                                                              theorem Multiset.count_map {α : Type u_3} {β : Type u_4} (f : αβ) (s : Multiset α) [DecidableEq β] (b : β) :
                                                              Multiset.count b (Multiset.map f s) = (Multiset.filter (fun (a : α) => b = f a) s).card
                                                              theorem Multiset.count_map_eq_count {α : Type u_1} {β : Type v} [DecidableEq α] [DecidableEq β] (f : αβ) (s : Multiset α) (hf : Set.InjOn f {x : α | x s}) (x : α) (H : x s) :

                                                              Multiset.map f preserves count if f is injective on the set of elements contained in the multiset

                                                              theorem Multiset.count_map_eq_count' {α : Type u_1} {β : Type v} [DecidableEq α] [DecidableEq β] (f : αβ) (s : Multiset α) (hf : Function.Injective f) (x : α) :

                                                              Multiset.map f preserves count if f is injective

                                                              theorem Multiset.filter_eq' {α : Type u_1} [DecidableEq α] (s : Multiset α) (b : α) :
                                                              Multiset.filter (fun (x : α) => x = b) s = Multiset.replicate (Multiset.count b s) b
                                                              theorem Multiset.filter_eq {α : Type u_1} [DecidableEq α] (s : Multiset α) (b : α) :
                                                              theorem Multiset.erase_attach_map_val {α : Type u_1} [DecidableEq α] (s : Multiset α) (x : { x : α // x s }) :
                                                              Multiset.map Subtype.val (s.attach.erase x) = s.erase x
                                                              theorem Multiset.erase_attach_map {α : Type u_1} {β : Type v} [DecidableEq α] (s : Multiset α) (f : αβ) (x : { x : α // x s }) :
                                                              Multiset.map (fun (j : { x : α // x s }) => f j) (s.attach.erase x) = Multiset.map f (s.erase x)
                                                              theorem Multiset.add_left_inj {α : Type u_1} {s t u : Multiset α} :
                                                              s + u = t + u s = t
                                                              theorem Multiset.add_right_inj {α : Type u_1} {s t u : Multiset α} :
                                                              s + t = s + u t = u

                                                              Subtraction #

                                                              def Multiset.sub {α : Type u_1} [DecidableEq α] (s t : Multiset α) :

                                                              s - t is the multiset such that count a (s - t) = count a s - count a t for all a. (note that it is truncated subtraction, so count a (s - t) = 0 if count a s ≤ count a t).

                                                              Equations
                                                              Instances For
                                                                instance Multiset.instSub {α : Type u_1} [DecidableEq α] :
                                                                Equations
                                                                @[simp]
                                                                theorem Multiset.coe_sub {α : Type u_1} [DecidableEq α] (s t : List α) :
                                                                s - t = (s.diff t)
                                                                @[simp]
                                                                theorem Multiset.sub_zero {α : Type u_1} [DecidableEq α] (s : Multiset α) :
                                                                s - 0 = s

                                                                This is a special case of tsub_zero, which should be used instead of this. This is needed to prove OrderedSub (Multiset α).

                                                                @[simp]
                                                                theorem Multiset.sub_cons {α : Type u_1} [DecidableEq α] (a : α) (s t : Multiset α) :
                                                                s - a ::ₘ t = s.erase a - t
                                                                theorem Multiset.zero_sub {α : Type u_1} [DecidableEq α] (t : Multiset α) :
                                                                0 - t = 0
                                                                @[simp]
                                                                theorem Multiset.countP_sub {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                t s∀ (p : αProp) [inst : DecidablePred p], Multiset.countP p (s - t) = Multiset.countP p s - Multiset.countP p t
                                                                @[simp]
                                                                theorem Multiset.count_sub {α : Type u_1} [DecidableEq α] (a : α) (s t : Multiset α) :
                                                                theorem Multiset.sub_le_iff_le_add {α : Type u_1} [DecidableEq α] {s t u : Multiset α} :
                                                                s - t u s u + t

                                                                This is a special case of tsub_le_iff_right, which should be used instead of this. This is needed to prove OrderedSub (Multiset α).

                                                                theorem Multiset.sub_le_iff_le_add' {α : Type u_1} [DecidableEq α] {s t u : Multiset α} :
                                                                s - t u s t + u

                                                                This is a special case of tsub_le_iff_left, which should be used instead of this.

                                                                theorem Multiset.sub_le_self {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                s - t s
                                                                theorem Multiset.add_sub_assoc {α : Type u_1} [DecidableEq α] {s t u : Multiset α} (hut : u t) :
                                                                s + t - u = s + (t - u)
                                                                theorem Multiset.add_sub_cancel {α : Type u_1} [DecidableEq α] {s t : Multiset α} (hts : t s) :
                                                                s - t + t = s
                                                                theorem Multiset.sub_add_cancel {α : Type u_1} [DecidableEq α] {s t : Multiset α} (hts : t s) :
                                                                s - t + t = s
                                                                theorem Multiset.sub_add_eq_sub_sub {α : Type u_1} [DecidableEq α] {s t u : Multiset α} :
                                                                s - (t + u) = s - t - u
                                                                theorem Multiset.le_sub_add {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                s s - t + t
                                                                theorem Multiset.le_add_sub {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                s t + (s - t)
                                                                theorem Multiset.sub_le_sub_right {α : Type u_1} [DecidableEq α] {s t u : Multiset α} (hst : s t) :
                                                                s - u t - u
                                                                theorem Multiset.add_sub_cancel_right {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                s + t - t = s
                                                                theorem Multiset.eq_sub_of_add_eq {α : Type u_1} [DecidableEq α] {s t u : Multiset α} (hstu : s + t = u) :
                                                                s = u - t
                                                                @[simp]
                                                                theorem Multiset.filter_sub {α : Type u_1} [DecidableEq α] (p : αProp) [DecidablePred p] (s t : Multiset α) :
                                                                @[simp]
                                                                theorem Multiset.sub_filter_eq_filter_not {α : Type u_1} [DecidableEq α] (p : αProp) [DecidablePred p] (s : Multiset α) :
                                                                s - Multiset.filter p s = Multiset.filter (fun (a : α) => ¬p a) s
                                                                theorem Multiset.cons_sub_of_le {α : Type u_1} [DecidableEq α] (a : α) {s t : Multiset α} (h : t s) :
                                                                a ::ₘ s - t = a ::ₘ (s - t)
                                                                @[simp]
                                                                theorem Multiset.card_sub {α : Type u_1} [DecidableEq α] {s t : Multiset α} (h : t s) :
                                                                (s - t).card = s.card - t.card

                                                                Union #

                                                                def Multiset.union {α : Type u_1} [DecidableEq α] (s t : Multiset α) :

                                                                s ∪ t is the multiset such that the multiplicity of each a in it is the maximum of the multiplicity of a in s and t. This is the supremum of multisets.

                                                                Equations
                                                                • s.union t = s - t + t
                                                                Instances For
                                                                  instance Multiset.instUnion {α : Type u_1} [DecidableEq α] :
                                                                  Equations
                                                                  theorem Multiset.union_def {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                  s t = s - t + t
                                                                  theorem Multiset.le_union_left {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                  s s t
                                                                  theorem Multiset.le_union_right {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                  t s t
                                                                  theorem Multiset.eq_union_left {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                  t ss t = s
                                                                  theorem Multiset.union_le_union_right {α : Type u_1} [DecidableEq α] {s t : Multiset α} (h : s t) (u : Multiset α) :
                                                                  s u t u
                                                                  theorem Multiset.union_le {α : Type u_1} [DecidableEq α] {s t u : Multiset α} (h₁ : s u) (h₂ : t u) :
                                                                  s t u
                                                                  @[simp]
                                                                  theorem Multiset.mem_union {α : Type u_1} [DecidableEq α] {s t : Multiset α} {a : α} :
                                                                  a s t a s a t
                                                                  @[simp]
                                                                  theorem Multiset.map_union {α : Type u_1} {β : Type v} [DecidableEq α] [DecidableEq β] {f : αβ} (finj : Function.Injective f) {s t : Multiset α} :
                                                                  @[simp]
                                                                  theorem Multiset.zero_union {α : Type u_1} [DecidableEq α] {s : Multiset α} :
                                                                  0 s = s
                                                                  @[simp]
                                                                  theorem Multiset.union_zero {α : Type u_1} [DecidableEq α] {s : Multiset α} :
                                                                  s 0 = s
                                                                  @[simp]
                                                                  theorem Multiset.count_union {α : Type u_1} [DecidableEq α] (a : α) (s t : Multiset α) :
                                                                  @[simp]
                                                                  theorem Multiset.filter_union {α : Type u_1} [DecidableEq α] (p : αProp) [DecidablePred p] (s t : Multiset α) :

                                                                  Intersection #

                                                                  def Multiset.inter {α : Type u_1} [DecidableEq α] (s t : Multiset α) :

                                                                  s ∩ t is the multiset such that the multiplicity of each a in it is the minimum of the multiplicity of a in s and t. This is the infimum of multisets.

                                                                  Equations
                                                                  Instances For
                                                                    instance Multiset.instInter {α : Type u_1} [DecidableEq α] :
                                                                    Equations
                                                                    @[simp]
                                                                    theorem Multiset.inter_zero {α : Type u_1} [DecidableEq α] (s : Multiset α) :
                                                                    s 0 = 0
                                                                    @[simp]
                                                                    theorem Multiset.zero_inter {α : Type u_1} [DecidableEq α] (s : Multiset α) :
                                                                    0 s = 0
                                                                    @[simp]
                                                                    theorem Multiset.cons_inter_of_pos {α : Type u_1} [DecidableEq α] {t : Multiset α} {a : α} (s : Multiset α) :
                                                                    a t(a ::ₘ s) t = a ::ₘ s t.erase a
                                                                    @[simp]
                                                                    theorem Multiset.cons_inter_of_neg {α : Type u_1} [DecidableEq α] {t : Multiset α} {a : α} (s : Multiset α) :
                                                                    at(a ::ₘ s) t = s t
                                                                    theorem Multiset.inter_le_left {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                    s t s
                                                                    theorem Multiset.inter_le_right {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                    s t t
                                                                    theorem Multiset.le_inter {α : Type u_1} [DecidableEq α] {s t u : Multiset α} (h₁ : s t) (h₂ : s u) :
                                                                    s t u
                                                                    @[simp]
                                                                    theorem Multiset.mem_inter {α : Type u_1} [DecidableEq α] {s t : Multiset α} {a : α} :
                                                                    a s t a s a t
                                                                    instance Multiset.instLattice {α : Type u_1} [DecidableEq α] :
                                                                    Equations
                                                                    @[simp]
                                                                    theorem Multiset.sup_eq_union {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                    s t = s t
                                                                    @[simp]
                                                                    theorem Multiset.inf_eq_inter {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                    s t = s t
                                                                    @[simp]
                                                                    theorem Multiset.le_inter_iff {α : Type u_1} [DecidableEq α] {s t u : Multiset α} :
                                                                    s t u s t s u
                                                                    @[simp]
                                                                    theorem Multiset.union_le_iff {α : Type u_1} [DecidableEq α] {s t u : Multiset α} :
                                                                    s t u s u t u
                                                                    theorem Multiset.union_comm {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                    s t = t s
                                                                    theorem Multiset.inter_comm {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                    s t = t s
                                                                    theorem Multiset.eq_union_right {α : Type u_1} [DecidableEq α] {s t : Multiset α} (h : s t) :
                                                                    s t = t
                                                                    theorem Multiset.union_le_union_left {α : Type u_1} [DecidableEq α] {s t : Multiset α} (h : s t) (u : Multiset α) :
                                                                    u s u t
                                                                    theorem Multiset.union_le_add {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                    s t s + t
                                                                    theorem Multiset.union_add_distrib {α : Type u_1} [DecidableEq α] (s t u : Multiset α) :
                                                                    s t + u = s + u (t + u)
                                                                    theorem Multiset.add_union_distrib {α : Type u_1} [DecidableEq α] (s t u : Multiset α) :
                                                                    s + (t u) = s + t (s + u)
                                                                    theorem Multiset.cons_union_distrib {α : Type u_1} [DecidableEq α] (a : α) (s t : Multiset α) :
                                                                    a ::ₘ (s t) = a ::ₘ s a ::ₘ t
                                                                    theorem Multiset.inter_add_distrib {α : Type u_1} [DecidableEq α] (s t u : Multiset α) :
                                                                    s t + u = (s + u) (t + u)
                                                                    theorem Multiset.add_inter_distrib {α : Type u_1} [DecidableEq α] (s t u : Multiset α) :
                                                                    s + t u = (s + t) (s + u)
                                                                    theorem Multiset.cons_inter_distrib {α : Type u_1} [DecidableEq α] (a : α) (s t : Multiset α) :
                                                                    a ::ₘ s t = (a ::ₘ s) (a ::ₘ t)
                                                                    theorem Multiset.union_add_inter {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                    s t + s t = s + t
                                                                    theorem Multiset.sub_add_inter {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                    s - t + s t = s
                                                                    theorem Multiset.sub_inter {α : Type u_1} [DecidableEq α] (s t : Multiset α) :
                                                                    s - s t = s - t
                                                                    @[simp]
                                                                    theorem Multiset.count_inter {α : Type u_1} [DecidableEq α] (a : α) (s t : Multiset α) :
                                                                    @[simp]
                                                                    theorem Multiset.coe_inter {α : Type u_1} [DecidableEq α] (s t : List α) :
                                                                    s t = (s.bagInter t)
                                                                    @[simp]
                                                                    theorem Multiset.filter_inter {α : Type u_1} [DecidableEq α] (p : αProp) [DecidablePred p] (s t : Multiset α) :
                                                                    @[simp]
                                                                    theorem Multiset.replicate_inter {α : Type u_1} [DecidableEq α] (n : ) (x : α) (s : Multiset α) :
                                                                    @[simp]
                                                                    theorem Multiset.inter_replicate {α : Type u_1} [DecidableEq α] (s : Multiset α) (n : ) (x : α) :
                                                                    @[simp]
                                                                    theorem Multiset.map_le_map_iff {α : Type u_1} {β : Type v} {f : αβ} (hf : Function.Injective f) {s t : Multiset α} :
                                                                    def Multiset.mapEmbedding {α : Type u_1} {β : Type v} (f : α β) :

                                                                    Associate to an embedding f from α to β the order embedding that maps a multiset to its image under f.

                                                                    Equations
                                                                    Instances For
                                                                      @[simp]
                                                                      theorem Multiset.mapEmbedding_apply {α : Type u_1} {β : Type v} (f : α β) (s : Multiset α) :
                                                                      theorem Multiset.count_eq_card_filter_eq {α : Type u_1} [DecidableEq α] (s : Multiset α) (a : α) :
                                                                      Multiset.count a s = (Multiset.filter (fun (x : α) => a = x) s).card
                                                                      @[simp]

                                                                      Mapping a multiset through a predicate and counting the Trues yields the cardinality of the set filtered by the predicate. Note that this uses the notion of a multiset of Props - due to the decidability requirements of count, the decidability instance on the LHS is different from the RHS. In particular, the decidability instance on the left leaks Classical.decEq. See here for more discussion.

                                                                      @[simp]
                                                                      theorem Multiset.sub_singleton {α : Type u_1} [DecidableEq α] (a : α) (s : Multiset α) :
                                                                      s - {a} = s.erase a
                                                                      theorem Multiset.mem_sub {α : Type u_1} [DecidableEq α] {a : α} {s t : Multiset α} :
                                                                      theorem Multiset.inter_add_sub_of_add_eq_add {α : Type u_1} [DecidableEq α] {M N P Q : Multiset α} (h : M + N = P + Q) :
                                                                      N Q + (P - M) = N

                                                                      Lift a relation to Multisets #

                                                                      inductive Multiset.Rel {α : Type u_1} {β : Type v} (r : αβProp) :
                                                                      Multiset αMultiset βProp

                                                                      Rel r s t -- lift the relation r between two elements to a relation between s and t, s.t. there is a one-to-one mapping between elements in s and t following r.

                                                                      Instances For
                                                                        theorem Multiset.rel_iff {α : Type u_1} {β : Type v} (r : αβProp) (a✝ : Multiset α) (a✝¹ : Multiset β) :
                                                                        Multiset.Rel r a✝ a✝¹ a✝ = 0 a✝¹ = 0 ∃ (a : α) (b : β) (as : Multiset α) (bs : Multiset β), r a b Multiset.Rel r as bs a✝ = a ::ₘ as a✝¹ = b ::ₘ bs
                                                                        theorem Multiset.rel_flip {α : Type u_1} {β : Type v} {r : αβProp} {s : Multiset β} {t : Multiset α} :
                                                                        theorem Multiset.rel_refl_of_refl_on {α : Type u_1} {m : Multiset α} {r : ααProp} :
                                                                        (∀ xm, r x x)Multiset.Rel r m m
                                                                        theorem Multiset.rel_eq_refl {α : Type u_1} {s : Multiset α} :
                                                                        Multiset.Rel (fun (x1 x2 : α) => x1 = x2) s s
                                                                        theorem Multiset.rel_eq {α : Type u_1} {s t : Multiset α} :
                                                                        Multiset.Rel (fun (x1 x2 : α) => x1 = x2) s t s = t
                                                                        theorem Multiset.Rel.mono {α : Type u_1} {β : Type v} {r p : αβProp} {s : Multiset α} {t : Multiset β} (hst : Multiset.Rel r s t) (h : as, bt, r a bp a b) :
                                                                        theorem Multiset.Rel.add {α : Type u_1} {β : Type v} {r : αβProp} {s : Multiset α} {t : Multiset β} {u : Multiset α} {v : Multiset β} (hst : Multiset.Rel r s t) (huv : Multiset.Rel r u v) :
                                                                        Multiset.Rel r (s + u) (t + v)
                                                                        theorem Multiset.rel_flip_eq {α : Type u_1} {s t : Multiset α} :
                                                                        Multiset.Rel (fun (a b : α) => b = a) s t s = t
                                                                        @[simp]
                                                                        theorem Multiset.rel_zero_left {α : Type u_1} {β : Type v} {r : αβProp} {b : Multiset β} :
                                                                        Multiset.Rel r 0 b b = 0
                                                                        @[simp]
                                                                        theorem Multiset.rel_zero_right {α : Type u_1} {β : Type v} {r : αβProp} {a : Multiset α} :
                                                                        Multiset.Rel r a 0 a = 0
                                                                        theorem Multiset.rel_cons_left {α : Type u_1} {β : Type v} {r : αβProp} {a : α} {as : Multiset α} {bs : Multiset β} :
                                                                        Multiset.Rel r (a ::ₘ as) bs ∃ (b : β) (bs' : Multiset β), r a b Multiset.Rel r as bs' bs = b ::ₘ bs'
                                                                        theorem Multiset.rel_cons_right {α : Type u_1} {β : Type v} {r : αβProp} {as : Multiset α} {b : β} {bs : Multiset β} :
                                                                        Multiset.Rel r as (b ::ₘ bs) ∃ (a : α) (as' : Multiset α), r a b Multiset.Rel r as' bs as = a ::ₘ as'
                                                                        theorem Multiset.rel_add_left {α : Type u_1} {β : Type v} {r : αβProp} {as₀ as₁ : Multiset α} {bs : Multiset β} :
                                                                        Multiset.Rel r (as₀ + as₁) bs ∃ (bs₀ : Multiset β) (bs₁ : Multiset β), Multiset.Rel r as₀ bs₀ Multiset.Rel r as₁ bs₁ bs = bs₀ + bs₁
                                                                        theorem Multiset.rel_add_right {α : Type u_1} {β : Type v} {r : αβProp} {as : Multiset α} {bs₀ bs₁ : Multiset β} :
                                                                        Multiset.Rel r as (bs₀ + bs₁) ∃ (as₀ : Multiset α) (as₁ : Multiset α), Multiset.Rel r as₀ bs₀ Multiset.Rel r as₁ bs₁ as = as₀ + as₁
                                                                        theorem Multiset.rel_map_left {α : Type u_1} {β : Type v} {γ : Type u_2} {r : αβProp} {s : Multiset γ} {f : γα} {t : Multiset β} :
                                                                        Multiset.Rel r (Multiset.map f s) t Multiset.Rel (fun (a : γ) (b : β) => r (f a) b) s t
                                                                        theorem Multiset.rel_map_right {α : Type u_1} {β : Type v} {γ : Type u_2} {r : αβProp} {s : Multiset α} {t : Multiset γ} {f : γβ} :
                                                                        Multiset.Rel r s (Multiset.map f t) Multiset.Rel (fun (a : α) (b : γ) => r a (f b)) s t
                                                                        theorem Multiset.rel_map {α : Type u_1} {β : Type v} {γ : Type u_2} {δ : Type u_3} {p : γδProp} {s : Multiset α} {t : Multiset β} {f : αγ} {g : βδ} :
                                                                        Multiset.Rel p (Multiset.map f s) (Multiset.map g t) Multiset.Rel (fun (a : α) (b : β) => p (f a) (g b)) s t
                                                                        theorem Multiset.card_eq_card_of_rel {α : Type u_1} {β : Type v} {r : αβProp} {s : Multiset α} {t : Multiset β} (h : Multiset.Rel r s t) :
                                                                        s.card = t.card
                                                                        theorem Multiset.exists_mem_of_rel_of_mem {α : Type u_1} {β : Type v} {r : αβProp} {s : Multiset α} {t : Multiset β} (h : Multiset.Rel r s t) {a : α} :
                                                                        a sbt, r a b
                                                                        theorem Multiset.rel_of_forall {α : Type u_1} {m1 m2 : Multiset α} {r : ααProp} (h : ∀ (a b : α), a m1b m2r a b) (hc : m1.card = m2.card) :
                                                                        Multiset.Rel r m1 m2
                                                                        theorem Multiset.rel_replicate_left {α : Type u_1} {m : Multiset α} {a : α} {r : ααProp} {n : } :
                                                                        Multiset.Rel r (Multiset.replicate n a) m m.card = n xm, r a x
                                                                        theorem Multiset.rel_replicate_right {α : Type u_1} {m : Multiset α} {a : α} {r : ααProp} {n : } :
                                                                        Multiset.Rel r m (Multiset.replicate n a) m.card = n xm, r x a
                                                                        theorem Multiset.Rel.trans {α : Type u_1} (r : ααProp) [IsTrans α r] {s t u : Multiset α} (r1 : Multiset.Rel r s t) (r2 : Multiset.Rel r t u) :
                                                                        theorem Multiset.Rel.countP_eq {α : Type u_1} (r : ααProp) [IsTrans α r] [IsSymm α r] {s t : Multiset α} (x : α) [DecidablePred (r x)] (h : Multiset.Rel r s t) :
                                                                        theorem Multiset.map_eq_map {α : Type u_1} {β : Type v} {f : αβ} (hf : Function.Injective f) {s t : Multiset α} :
                                                                        theorem Multiset.map_injective {α : Type u_1} {β : Type v} {f : αβ} (hf : Function.Injective f) :
                                                                        theorem Multiset.filter_attach' {α : Type u_1} (s : Multiset α) (p : { a : α // a s }Prop) [DecidableEq α] [DecidablePred p] :
                                                                        Multiset.filter p s.attach = Multiset.map (Subtype.map id ) (Multiset.filter (fun (x : α) => ∃ (h : x s), p x, h) s).attach
                                                                        theorem Multiset.map_mk_eq_map_mk_of_rel {α : Type u_1} {r : ααProp} {s t : Multiset α} (hst : Multiset.Rel r s t) :
                                                                        theorem Multiset.exists_multiset_eq_map_quot_mk {α : Type u_1} {r : ααProp} (s : Multiset (Quot r)) :
                                                                        ∃ (t : Multiset α), s = Multiset.map (Quot.mk r) t
                                                                        theorem Multiset.induction_on_multiset_quot {α : Type u_1} {r : ααProp} {p : Multiset (Quot r)Prop} (s : Multiset (Quot r)) :
                                                                        (∀ (s : Multiset α), p (Multiset.map (Quot.mk r) s))p s

                                                                        Disjoint multisets #

                                                                        @[deprecated Disjoint (since := "2024-11-01")]
                                                                        def Multiset.Disjoint {α : Type u_1} (s t : Multiset α) :

                                                                        Disjoint s t means that s and t have no elements in common.

                                                                        Equations
                                                                        • s.Disjoint t = ∀ ⦃a : α⦄, a sa tFalse
                                                                        Instances For
                                                                          theorem Multiset.disjoint_left {α : Type u_1} {s t : Multiset α} :
                                                                          Disjoint s t ∀ {a : α}, a sat
                                                                          @[simp]
                                                                          theorem Multiset.coe_disjoint {α : Type u_1} (l₁ l₂ : List α) :
                                                                          Disjoint l₁ l₂ l₁.Disjoint l₂
                                                                          @[deprecated Disjoint.symm (since := "2024-11-01")]
                                                                          theorem Multiset.Disjoint.symm {α : Type u_1} [PartialOrder α] [OrderBot α] ⦃a b : α :
                                                                          Disjoint a bDisjoint b a

                                                                          Alias of Disjoint.symm.

                                                                          @[deprecated disjoint_comm (since := "2024-11-01")]
                                                                          theorem Multiset.disjoint_comm {α : Type u_1} [PartialOrder α] [OrderBot α] {a b : α} :

                                                                          Alias of disjoint_comm.

                                                                          theorem Multiset.disjoint_right {α : Type u_1} {s t : Multiset α} :
                                                                          Disjoint s t ∀ {a : α}, a tas
                                                                          theorem Multiset.disjoint_iff_ne {α : Type u_1} {s t : Multiset α} :
                                                                          Disjoint s t as, bt, a b
                                                                          theorem Multiset.disjoint_of_subset_left {α : Type u_1} {s t u : Multiset α} (h : s u) (d : Disjoint u t) :
                                                                          theorem Multiset.disjoint_of_subset_right {α : Type u_1} {s t u : Multiset α} (h : t u) (d : Disjoint s u) :
                                                                          @[deprecated Disjoint.mono_left (since := "2024-11-01")]
                                                                          theorem Multiset.disjoint_of_le_left {α : Type u_1} [PartialOrder α] [OrderBot α] {a b c : α} (h : a b) :
                                                                          Disjoint b cDisjoint a c

                                                                          Alias of Disjoint.mono_left.

                                                                          @[deprecated Disjoint.mono_right (since := "2024-11-01")]
                                                                          theorem Multiset.disjoint_of_le_right {α : Type u_1} [PartialOrder α] [OrderBot α] {a b c : α} :
                                                                          b cDisjoint a cDisjoint a b

                                                                          Alias of Disjoint.mono_right.

                                                                          @[simp]
                                                                          theorem Multiset.zero_disjoint {α : Type u_1} (l : Multiset α) :
                                                                          @[simp]
                                                                          theorem Multiset.singleton_disjoint {α : Type u_1} {l : Multiset α} {a : α} :
                                                                          Disjoint {a} l al
                                                                          @[simp]
                                                                          theorem Multiset.disjoint_singleton {α : Type u_1} {l : Multiset α} {a : α} :
                                                                          Disjoint l {a} al
                                                                          @[simp]
                                                                          theorem Multiset.disjoint_add_left {α : Type u_1} {s t u : Multiset α} :
                                                                          Disjoint (s + t) u Disjoint s u Disjoint t u
                                                                          @[simp]
                                                                          theorem Multiset.disjoint_add_right {α : Type u_1} {s t u : Multiset α} :
                                                                          Disjoint s (t + u) Disjoint s t Disjoint s u
                                                                          @[simp]
                                                                          theorem Multiset.disjoint_cons_left {α : Type u_1} {a : α} {s t : Multiset α} :
                                                                          Disjoint (a ::ₘ s) t at Disjoint s t
                                                                          @[simp]
                                                                          theorem Multiset.disjoint_cons_right {α : Type u_1} {a : α} {s t : Multiset α} :
                                                                          Disjoint s (a ::ₘ t) as Disjoint s t
                                                                          theorem Multiset.inter_eq_zero_iff_disjoint {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                          s t = 0 Disjoint s t
                                                                          @[simp]
                                                                          theorem Multiset.disjoint_union_left {α : Type u_1} [DecidableEq α] {s t u : Multiset α} :
                                                                          @[simp]
                                                                          theorem Multiset.disjoint_union_right {α : Type u_1} [DecidableEq α] {s t u : Multiset α} :
                                                                          theorem Multiset.add_eq_union_iff_disjoint {α : Type u_1} [DecidableEq α] {s t : Multiset α} :
                                                                          s + t = s t Disjoint s t
                                                                          theorem Multiset.add_eq_union_left_of_le {α : Type u_1} [DecidableEq α] {s t u : Multiset α} (h : t s) :
                                                                          u + s = u t Disjoint u s s = t
                                                                          theorem Multiset.add_eq_union_right_of_le {α : Type u_1} [DecidableEq α] {x y z : Multiset α} (h : z y) :
                                                                          x + y = x z y = z Disjoint x y
                                                                          theorem Multiset.disjoint_map_map {α : Type u_1} {β : Type v} {γ : Type u_2} {f : αγ} {g : βγ} {s : Multiset α} {t : Multiset β} :
                                                                          Disjoint (Multiset.map f s) (Multiset.map g t) as, bt, f a g b
                                                                          def Multiset.Pairwise {α : Type u_1} (r : ααProp) (m : Multiset α) :

                                                                          Pairwise r m states that there exists a list of the elements s.t. r holds pairwise on this list.

                                                                          Equations
                                                                          Instances For
                                                                            @[simp]
                                                                            theorem Multiset.pairwise_zero {α : Type u_1} (r : ααProp) :
                                                                            theorem Multiset.pairwise_coe_iff {α : Type u_1} {r : ααProp} {l : List α} :
                                                                            Multiset.Pairwise r l ∃ (l' : List α), l.Perm l' List.Pairwise r l'
                                                                            theorem Multiset.pairwise_coe_iff_pairwise {α : Type u_1} {r : ααProp} (hr : Symmetric r) {l : List α} :
                                                                            theorem Multiset.map_set_pairwise {α : Type u_1} {β : Type v} {f : αβ} {r : ββProp} {m : Multiset α} (h : {a : α | a m}.Pairwise fun (a₁ a₂ : α) => r (f a₁) (f a₂)) :
                                                                            {b : β | b Multiset.map f m}.Pairwise r
                                                                            def Multiset.chooseX {α : Type u_1} (p : αProp) [DecidablePred p] (l : Multiset α) (_hp : ∃! a : α, a l p a) :
                                                                            { a : α // a l p a }

                                                                            Given a proof hp that there exists a unique a ∈ l such that p a, chooseX p l hp returns that a together with proofs of a ∈ l and p a.

                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              def Multiset.choose {α : Type u_1} (p : αProp) [DecidablePred p] (l : Multiset α) (hp : ∃! a : α, a l p a) :
                                                                              α

                                                                              Given a proof hp that there exists a unique a ∈ l such that p a, choose p l hp returns that a.

                                                                              Equations
                                                                              Instances For
                                                                                theorem Multiset.choose_spec {α : Type u_1} (p : αProp) [DecidablePred p] (l : Multiset α) (hp : ∃! a : α, a l p a) :
                                                                                theorem Multiset.choose_mem {α : Type u_1} (p : αProp) [DecidablePred p] (l : Multiset α) (hp : ∃! a : α, a l p a) :
                                                                                theorem Multiset.choose_property {α : Type u_1} (p : αProp) [DecidablePred p] (l : Multiset α) (hp : ∃! a : α, a l p a) :
                                                                                p (Multiset.choose p l hp)

                                                                                The equivalence between lists and multisets of a subsingleton type.

                                                                                Equations
                                                                                Instances For