Intervals in WithTop α
and WithBot α
#
In this file we prove various lemmas about Set.image
s and Set.preimage
s of intervals under
some : α → WithTop α
and some : α → WithBot α
.
@[simp]
theorem
WithTop.preimage_coe_Ioi
{α : Type u_1}
[Preorder α]
{a : α}
:
WithTop.some ⁻¹' Set.Ioi ↑a = Set.Ioi a
@[simp]
theorem
WithTop.preimage_coe_Ici
{α : Type u_1}
[Preorder α]
{a : α}
:
WithTop.some ⁻¹' Set.Ici ↑a = Set.Ici a
@[simp]
theorem
WithTop.preimage_coe_Iio
{α : Type u_1}
[Preorder α]
{a : α}
:
WithTop.some ⁻¹' Set.Iio ↑a = Set.Iio a
@[simp]
theorem
WithTop.preimage_coe_Iic
{α : Type u_1}
[Preorder α]
{a : α}
:
WithTop.some ⁻¹' Set.Iic ↑a = Set.Iic a
@[simp]
theorem
WithTop.preimage_coe_Icc
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithTop.some ⁻¹' Set.Icc ↑a ↑b = Set.Icc a b
@[simp]
theorem
WithTop.preimage_coe_Ico
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithTop.some ⁻¹' Set.Ico ↑a ↑b = Set.Ico a b
@[simp]
theorem
WithTop.preimage_coe_Ioc
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithTop.some ⁻¹' Set.Ioc ↑a ↑b = Set.Ioc a b
@[simp]
theorem
WithTop.preimage_coe_Ioo
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithTop.some ⁻¹' Set.Ioo ↑a ↑b = Set.Ioo a b
@[simp]
@[simp]
@[simp]
theorem
WithTop.image_coe_Iio
{α : Type u_1}
[Preorder α]
{a : α}
:
WithTop.some '' Set.Iio a = Set.Iio ↑a
theorem
WithTop.image_coe_Iic
{α : Type u_1}
[Preorder α]
{a : α}
:
WithTop.some '' Set.Iic a = Set.Iic ↑a
theorem
WithTop.image_coe_Icc
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithTop.some '' Set.Icc a b = Set.Icc ↑a ↑b
theorem
WithTop.image_coe_Ico
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithTop.some '' Set.Ico a b = Set.Ico ↑a ↑b
theorem
WithTop.image_coe_Ioc
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithTop.some '' Set.Ioc a b = Set.Ioc ↑a ↑b
theorem
WithTop.image_coe_Ioo
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithTop.some '' Set.Ioo a b = Set.Ioo ↑a ↑b
@[simp]
theorem
WithBot.preimage_coe_Ioi
{α : Type u_1}
[Preorder α]
{a : α}
:
WithBot.some ⁻¹' Set.Ioi ↑a = Set.Ioi a
@[simp]
theorem
WithBot.preimage_coe_Ici
{α : Type u_1}
[Preorder α]
{a : α}
:
WithBot.some ⁻¹' Set.Ici ↑a = Set.Ici a
@[simp]
theorem
WithBot.preimage_coe_Iio
{α : Type u_1}
[Preorder α]
{a : α}
:
WithBot.some ⁻¹' Set.Iio ↑a = Set.Iio a
@[simp]
theorem
WithBot.preimage_coe_Iic
{α : Type u_1}
[Preorder α]
{a : α}
:
WithBot.some ⁻¹' Set.Iic ↑a = Set.Iic a
@[simp]
theorem
WithBot.preimage_coe_Icc
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithBot.some ⁻¹' Set.Icc ↑a ↑b = Set.Icc a b
@[simp]
theorem
WithBot.preimage_coe_Ico
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithBot.some ⁻¹' Set.Ico ↑a ↑b = Set.Ico a b
@[simp]
theorem
WithBot.preimage_coe_Ioc
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithBot.some ⁻¹' Set.Ioc ↑a ↑b = Set.Ioc a b
@[simp]
theorem
WithBot.preimage_coe_Ioo
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithBot.some ⁻¹' Set.Ioo ↑a ↑b = Set.Ioo a b
@[simp]
@[simp]
@[simp]
theorem
WithBot.image_coe_Ioi
{α : Type u_1}
[Preorder α]
{a : α}
:
WithBot.some '' Set.Ioi a = Set.Ioi ↑a
theorem
WithBot.image_coe_Ici
{α : Type u_1}
[Preorder α]
{a : α}
:
WithBot.some '' Set.Ici a = Set.Ici ↑a
theorem
WithBot.image_coe_Icc
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithBot.some '' Set.Icc a b = Set.Icc ↑a ↑b
theorem
WithBot.image_coe_Ioc
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithBot.some '' Set.Ioc a b = Set.Ioc ↑a ↑b
theorem
WithBot.image_coe_Ico
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithBot.some '' Set.Ico a b = Set.Ico ↑a ↑b
theorem
WithBot.image_coe_Ioo
{α : Type u_1}
[Preorder α]
{a b : α}
:
WithBot.some '' Set.Ioo a b = Set.Ioo ↑a ↑b