Documentation

Pdl.Discon

Equations
Instances For
    @[simp]
    theorem conempty :
    @[simp]
    theorem consingle {f : Formula} :
    Con [f] = f
    theorem listEq_to_conEq {l1 l2 : List Formula} :
    l1 = l2Con l1 = Con l2
    Equations
    Instances For
      @[simp]
      theorem disempty :
      @[simp]
      theorem dissingle {f : Formula} :
      dis [f] = f
      theorem listEq_to_disEq {l1 l2 : List Formula} :
      l1 = l2dis l1 = dis l2
      Equations
      Instances For
        @[simp]
        @[simp]
        theorem disconsingle {f : Formula} :
        discon [[f]] = f
        theorem conEvalHT {X : List Formula} {f : Formula} {W : Type} {M : KripkeModel W} {w : W} :
        evaluate M w (Con (f :: X)) evaluate M w f evaluate M w (Con X)
        theorem conEval {W : Type} {M : KripkeModel W} {X : List Formula} {w : W} :
        evaluate M w (Con X) fX, evaluate M w f
        theorem disEvalHT {X : List Formula} {f : Formula} {W : Type} {M : KripkeModel W} {w : W} :
        evaluate M w (dis (f :: X)) evaluate M w f evaluate M w (dis X)
        theorem disEval {W : Type} {M : KripkeModel W} {X : List Formula} {w : W} :
        evaluate M w (dis X) fX, evaluate M w f
        theorem disconEval' {W : Type} {M : KripkeModel W} {w : W} {N : } (XS : List (List Formula)) :
        XS.length = N(evaluate M w (discon XS) YXS, fY, evaluate M w f)
        theorem disconEval {W : Type} {M : KripkeModel W} {w : W} (XS : List (List Formula)) :
        evaluate M w (discon XS) YXS, fY, evaluate M w f
        Equations
        Instances For
          Equations
          Instances For
            class HasUplus (α : TypeType) :
            Instances
              Equations
              theorem disconAnd {XS YS : List (List Formula)} :
              theorem disconOr {XS YS : List (List Formula)} :
              theorem union_elem_uplus {XS YS : Finset (Finset Formula)} {X Y : Finset Formula} :
              X XSY YSX Y XSYS
              theorem mapCon_mapForall {W : Type} {X : List (List Formula × List Program)} (M : KripkeModel W) (w : W) (φ : Formula) (g : List Formula × List ProgramFormulaList Formula) :
              (∃ fList.map (fun ( : List Formula × List Program) => Con (g φ)) X, evaluate M w f) fsList.map (fun ( : List Formula × List Program) => g φ) X, ffs, evaluate M w f
              theorem in_voc_dis (n : ) (L : List Formula) :
              n (dis L).voc φL, n φ.voc
              theorem in_voc_con (n : ) (L : List Formula) :
              n (Con L).voc φL, n φ.voc