Model Graphs (Section 7.1) #
Definition of Model Graphs #
A set of formulas is saturated if it is closed under:
removing double negations, splitting (negated) conjunctions,
unfolding boxes using any test profile, and unfolding diamonds using H
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Modelgraphs.Q
{W : Finset (Finset Formula)}
(R : ℕ → { x : Finset Formula // x ∈ W } → { x : Finset Formula // x ∈ W } → Prop)
:
Q α
Equations
- Modelgraphs.Q R (·c) = R c
- Modelgraphs.Q R (?'τ) = fun (v w : { x : Finset Formula // x ∈ W }) => v = w ∧ τ ∈ ↑v
- Modelgraphs.Q R (α⋓β) = fun (v w : { x : Finset Formula // x ∈ W }) => Modelgraphs.Q R α v w ∨ Modelgraphs.Q R β v w
- Modelgraphs.Q R (α;'β) = Relation.Comp (Modelgraphs.Q R α) (Modelgraphs.Q R β)
- Modelgraphs.Q R (∗α) = Relation.ReflTransGen (Modelgraphs.Q R α)
Instances For
A model graph is a Kripke model using sets of formulas as states and fulfilling conditions (i) to (iv). See MB Def 19, page 31. Note: In (ii) MB only has →. We follow BRV Def 4.18 and 4.84. Note: In (iii) "a" is atomic, but in iv "α" is any program.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Truth Lemma #
theorem
loadClaimHelper
{Worlds : Finset (Finset Formula)}
{MG : ModelGraph Worlds}
{X Y : { x : Finset Formula // x ∈ Worlds }}
{δ : List Program}
{φ : Formula}
{l : List { x : Finset Formula // x ∈ Worlds }}
(length_def : l.length + 1 = δ.length)
(δφ_in_X : (⌈⌈δ⌉⌉φ) ∈ ↑X)
(lchain : List.Chain' (pairRel ↑MG) (((?'⊤) :: δ).zip (X :: l ++ [Y])))
(IHδ :
∀ d ∈ δ,
∀ (X' Y' : { x : Finset Formula // x ∈ Worlds }) (φ' : Formula), (⌈d⌉φ') ∈ ↑X' → relate (↑MG) d X' Y' → φ' ∈ ↑Y')
(i : Fin (X :: l ++ [Y]).length)
: