Model Graphs (Section 7.1) #
Definition of Model Graphs #
A set of formulas is saturated if it is closed under:
removing double negations, splitting (negated) conjunctions,
unfolding boxes using any test profile, and unfolding diamonds using H.
Part of Def 6.2
Equations
- One or more equations did not get rendered due to their size.
Instances For
Q α
Equations
- Modelgraphs.Q R (·c) = R c
- Modelgraphs.Q R (?'τ) = fun (v w : ↥W) => v = w ∧ τ ∈ ↑v
- Modelgraphs.Q R (α⋓β) = fun (v w : ↥W) => Modelgraphs.Q R α v w ∨ Modelgraphs.Q R β v w
- Modelgraphs.Q R (α;'β) = Relation.Comp (Modelgraphs.Q R α) (Modelgraphs.Q R β)
- Modelgraphs.Q R (∗α) = Relation.ReflTransGen (Modelgraphs.Q R α)
Instances For
Definition 6.4. A model graph is a Kripke model over sets of formulas as states fulfilling
the conditions (a) to (b). See also [Bor88] Def 19 on page 31 where (a)-(b) are named (i)-(iv).
Note: In MB item (b) aka (ii) only has →. We use ↔ similar to [BdRV01] Def 4.18 and 4.84.
Note: In item (c) a is atomic, but in item (d) α is any program.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Truth Lemma #
theorem
loadClaimHelper
{Worlds : Finset (Finset Formula)}
{MG : ModelGraph Worlds}
{X Y : { x : Finset Formula // x ∈ Worlds }}
{δ : List Program}
{φ : Formula}
{l : List { x : Finset Formula // x ∈ Worlds }}
(length_def : l.length + 1 = δ.length)
(δφ_in_X : (⌈⌈δ⌉⌉φ) ∈ ↑X)
(lchain : List.IsChain (pairRel ↑MG) (((?'⊤) :: δ).zip (X :: l ++ [Y])))
(IHδ :
∀ d ∈ δ,
∀ (X' Y' : { x : Finset Formula // x ∈ Worlds }) (φ' : Formula), (⌈d⌉φ') ∈ ↑X' → relate (↑MG) d X' Y' → φ' ∈ ↑Y')
(i : Fin (X :: l ++ [Y]).length)
:
@[irreducible]
theorem
Q_then_relate
{Worlds : Finset (Finset Formula)}
(MG : ModelGraph Worlds)
(α : Program)
(X Y : ↥Worlds)
:
Modelgraphs.Q (↑MG).Rel α X Y → relate (↑MG) α X Y
C3 in notes. Originally MB Lemma 9, page 32, stronger version for induction loading. Now also using Q relation to overwrite tests.
theorem
truthLemma
{Worlds : Finset (Finset Formula)}
(MG : ModelGraph Worlds)
(X : ↥Worlds)
(P : Formula)
: