Documentation

Pdl.TransFinWF

Finite trans-inverse image and trans-irreflexive implies wellfounded #

We prove some helper lemmas about Relation.TransGen and WellFounded. The main result here is wf_of_finTransInvImage_of_transIrrefl and to be used for termination of the tableauGame.

theorem wf_of_trans_wf {α : Type} {r : ααProp} (trans_wf : WellFounded (Relation.TransGen r)) :

If the transitive closure of r is wellfounded, then r itself is wellfounded. This was for example proven in https://www.cs.utexas.edu/~EWD/ewd12xx/EWD1241.PDF (page 2 aka 3) (but here we prove it via WellFounded.wellFounded_iff_has_min instead.

theorem Finite.wf_of_irrefl_trans {α : Type} (r : ααProp) [Finite α] (trans_irrefl : IsIrrefl α (Relation.TransGen r)) :
theorem TransGen_from_Subtype {α : Type} {r : ααProp} {P : αProp} {x y : Subtype P} (h : Relation.TransGen (fun (x y : Subtype P) => r x y) x y) :
Relation.TransGen r x y
theorem wf_of_finTransInvImage_of_transIrrefl {α : Type} (r : ααProp) (finTransInvImage : ∀ (p : α), Finite { q : α // Relation.TransGen r q p }) (trans_irrefl : IsIrrefl α (Relation.TransGen r)) :

Suppose for any p the inverse-image of p under the transitive closure of r is finite, and suppose the transitive closure of r is irreflexive. Then r is wellfounded.