Equations
- vocabOfFormula Formula.bottom = ∅
- vocabOfFormula (·c) = {c}
- vocabOfFormula (~φ) = vocabOfFormula φ
- vocabOfFormula (φ⋀ψ) = vocabOfFormula φ ∪ vocabOfFormula ψ
- vocabOfFormula (□φ) = vocabOfFormula φ
Instances For
Equations
- vocabOfSetFormula x✝ = x✝.biUnion vocabOfFormula
Instances For
Equations
- formulaHasVocabulary = { voc := vocabOfFormula }
Equations
- setFormulaHasVocabulary = { voc := vocabOfSetFormula }
theorem
vocElem_subs_vocSet
{ϕ : Formula}
{X : Finset Formula}
:
ϕ ∈ X → vocabOfFormula ϕ ⊆ vocabOfSetFormula X
theorem
vocErase
{X : Finset Formula}
{ϕ : Formula}
:
HasVocabulary.voc (X \ {ϕ}) ⊆ HasVocabulary.voc X
theorem
vocUnion
{X Y : Finset Formula}
:
HasVocabulary.voc (X ∪ Y) = HasVocabulary.voc X ∪ HasVocabulary.voc Y
theorem
vocPreserved
(X : Finset Formula)
(ψ ϕ : Formula)
:
ψ ∈ X → HasVocabulary.voc ϕ = HasVocabulary.voc ψ → HasVocabulary.voc X = HasVocabulary.voc (X \ {ψ} ∪ {ϕ})
theorem
vocPreservedTwo
{X : Finset Formula}
(ψ ϕ1 ϕ2 : Formula)
:
ψ ∈ X → HasVocabulary.voc {ϕ1, ϕ2} = HasVocabulary.voc ψ → HasVocabulary.voc X = HasVocabulary.voc (X \ {ψ} ∪ {ϕ1, ϕ2})
theorem
vocPreservedSub
{X : Finset Formula}
(ψ ϕ : Formula)
:
ψ ∈ X → HasVocabulary.voc ϕ ⊆ HasVocabulary.voc ψ → HasVocabulary.voc (X \ {ψ} ∪ {ϕ}) ⊆ HasVocabulary.voc X