Documentation

Mathlib.Algebra.Order.Group.PosPart

Positive & negative parts #

Mathematical structures possessing an absolute value often also possess a unique decomposition of elements into "positive" and "negative" parts which are in some sense "disjoint" (e.g. the Jordan decomposition of a measure).

This file provides instances of PosPart and NegPart, the positive and negative parts of an element in a lattice ordered group.

Main statements #

References #

Tags #

positive part, negative part

instance instOneLePart {α : Type u_1} [Lattice α] [Group α] :

The positive part of an element a in a lattice ordered group is a ⊔ 1, denoted a⁺ᵐ.

Equations
instance instPosPart {α : Type u_1} [Lattice α] [AddGroup α] :

The positive part of an element a in a lattice ordered group is a ⊔ 0, denoted a⁺.

Equations
instance instLeOnePart {α : Type u_1} [Lattice α] [Group α] :

The negative part of an element a in a lattice ordered group is a⁻¹ ⊔ 1, denoted a⁻ᵐ .

Equations
instance instNegPart {α : Type u_1} [Lattice α] [AddGroup α] :

The negative part of an element a in a lattice ordered group is (-a) ⊔ 0, denoted a⁻.

Equations
theorem leOnePart_def {α : Type u_1} [Lattice α] [Group α] (a : α) :
theorem negPart_def {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
a = -a 0
theorem oneLePart_def {α : Type u_1} [Lattice α] [Group α] (a : α) :
a⁺ᵐ = a 1
theorem posPart_def {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
a = a 0
theorem oneLePart_mono {α : Type u_1} [Lattice α] [Group α] :
Monotone fun (x : α) => x⁺ᵐ
theorem posPart_mono {α : Type u_1} [Lattice α] [AddGroup α] :
Monotone fun (x : α) => x
@[simp]
theorem oneLePart_one {α : Type u_1} [Lattice α] [Group α] :
@[simp]
theorem posPart_zero {α : Type u_1} [Lattice α] [AddGroup α] :
0 = 0
@[simp]
theorem leOnePart_one {α : Type u_1} [Lattice α] [Group α] :
@[simp]
theorem negPart_zero {α : Type u_1} [Lattice α] [AddGroup α] :
0 = 0
theorem one_le_oneLePart {α : Type u_1} [Lattice α] [Group α] (a : α) :
theorem posPart_nonneg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
0 a
theorem one_le_leOnePart {α : Type u_1} [Lattice α] [Group α] (a : α) :
theorem negPart_nonneg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
0 a
theorem le_oneLePart {α : Type u_1} [Lattice α] [Group α] (a : α) :
theorem le_posPart {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
a a
theorem inv_le_leOnePart {α : Type u_1} [Lattice α] [Group α] (a : α) :
theorem neg_le_negPart {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
@[simp]
theorem oneLePart_eq_self {α : Type u_1} [Lattice α] [Group α] {a : α} :
a⁺ᵐ = a 1 a
@[simp]
theorem posPart_eq_self {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
a = a 0 a
@[simp]
theorem oneLePart_eq_one {α : Type u_1} [Lattice α] [Group α] {a : α} :
a⁺ᵐ = 1 a 1
@[simp]
theorem posPart_eq_zero {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
a = 0 a 0
@[simp]
theorem oneLePart_of_one_le {α : Type u_1} [Lattice α] [Group α] {a : α} :
1 aa⁺ᵐ = a

Alias of the reverse direction of oneLePart_eq_self.

@[simp]
theorem posPart_of_nonneg {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
0 aa = a
@[simp]
theorem oneLePart_of_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} :
a 1a⁺ᵐ = 1

Alias of the reverse direction of oneLePart_eq_one.

@[simp]
theorem posPart_of_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
a 0a = 0
theorem leOnePart_eq_inv' {α : Type u_1} [Lattice α] [Group α] {a : α} :

See also leOnePart_eq_inv.

theorem negPart_eq_neg' {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
a = -a 0 -a

See also negPart_eq_neg.

theorem leOnePart_eq_one' {α : Type u_1} [Lattice α] [Group α] {a : α} :

See also leOnePart_eq_one.

theorem negPart_eq_zero' {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
a = 0 -a 0

See also negPart_eq_zero.

theorem oneLePart_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} :
a⁺ᵐ 1 a 1
theorem posPart_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
a 0 a 0
theorem leOnePart_le_one' {α : Type u_1} [Lattice α] [Group α] {a : α} :

See also leOnePart_le_one.

theorem negPart_nonpos' {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
a 0 -a 0

See also negPart_nonpos.

theorem leOnePart_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} :
theorem negPart_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} :
a 0 -a 0
@[simp]
theorem one_lt_oneLePart {α : Type u_1} [Lattice α] [Group α] {a : α} (ha : 1 < a) :
@[simp]
theorem posPart_pos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} (ha : 0 < a) :
0 < a
@[simp]
theorem oneLePart_inv {α : Type u_1} [Lattice α] [Group α] (a : α) :
@[simp]
theorem posPart_neg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
(-a) = a
@[simp]
theorem leOnePart_inv {α : Type u_1} [Lattice α] [Group α] (a : α) :
@[simp]
theorem negPart_neg {α : Type u_1} [Lattice α] [AddGroup α] (a : α) :
(-a) = a
@[simp]
theorem leOnePart_eq_inv {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] :
@[simp]
theorem negPart_eq_neg {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] :
a = -a a 0
@[simp]
theorem leOnePart_eq_one {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] :
a⁻ᵐ = 1 1 a
@[simp]
theorem negPart_eq_zero {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] :
a = 0 0 a
@[simp]
theorem leOnePart_of_le_one {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] :
a 1a⁻ᵐ = a⁻¹

Alias of the reverse direction of leOnePart_eq_inv.

@[simp]
theorem negPart_of_nonpos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] :
a 0a = -a
@[simp]
theorem leOnePart_of_one_le {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] :
1 aa⁻ᵐ = 1

Alias of the reverse direction of leOnePart_eq_one.

@[simp]
theorem negPart_of_nonneg {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] :
0 aa = 0
@[simp]
theorem one_lt_ltOnePart {α : Type u_1} [Lattice α] [Group α] {a : α} [MulLeftMono α] (ha : a < 1) :
@[simp]
theorem negPart_pos {α : Type u_1} [Lattice α] [AddGroup α] {a : α} [AddLeftMono α] (ha : a < 0) :
0 < a
@[simp]
theorem oneLePart_div_leOnePart {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] (a : α) :
@[simp]
theorem posPart_sub_negPart {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] (a : α) :
a - a = a
@[simp]
theorem leOnePart_div_oneLePart {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] (a : α) :
@[simp]
theorem negPart_sub_posPart {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] (a : α) :
a - a = -a
theorem oneLePart_leOnePart_injective {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] :
Function.Injective fun (a : α) => (a⁺ᵐ , a⁻ᵐ)
theorem posPart_negPart_injective {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] :
Function.Injective fun (a : α) => (a, a)
theorem oneLePart_leOnePart_inj {α : Type u_1} [Lattice α] [Group α] {a b : α} [MulLeftMono α] :
theorem posPart_negPart_inj {α : Type u_1} [Lattice α] [AddGroup α] {a b : α} [AddLeftMono α] :
a = b a = b a = b
theorem leOnePart_eq_inv_inf_one {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] [MulRightMono α] (a : α) :
theorem negPart_eq_neg_inf_zero {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] [AddRightMono α] (a : α) :
a = -(a 0)
theorem oneLePart_mul_leOnePart {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] [MulRightMono α] (a : α) :
theorem posPart_add_negPart {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] [AddRightMono α] (a : α) :
a + a = |a|
theorem leOnePart_mul_oneLePart {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] [MulRightMono α] (a : α) :
theorem negPart_add_posPart {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] [AddRightMono α] (a : α) :
a + a = |a|
theorem oneLePart_inf_leOnePart_eq_one {α : Type u_1} [Lattice α] [Group α] [MulLeftMono α] [MulRightMono α] (a : α) :
theorem posPart_inf_negPart_eq_zero {α : Type u_1} [Lattice α] [AddGroup α] [AddLeftMono α] [AddRightMono α] (a : α) :
a a = 0
theorem sup_eq_mul_oneLePart_div {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
a b = b * (a / b)⁺ᵐ
theorem sup_eq_add_posPart_sub {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
a b = b + (a - b)
theorem inf_eq_div_oneLePart_div {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a b : α) :
a b = a / (a / b)⁺ᵐ
theorem inf_eq_sub_posPart_sub {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
a b = a - (a - b)
theorem le_iff_posPart_negPart {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a b : α) :
theorem mabs_mul_eq_oneLePart_sq {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a : α) :
mabs a * a = a⁺ᵐ ^ 2
theorem abs_add_eq_two_nsmul_posPart {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a : α) :
|a| + a = 2 a
theorem mul_mabs_eq_oneLePart_sq {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a : α) :
a * mabs a = a⁺ᵐ ^ 2
theorem add_abs_eq_two_nsmul_posPart {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a : α) :
a + |a| = 2 a
theorem mabs_div_eq_leOnePart_sq {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a : α) :
mabs a / a = a⁻ᵐ ^ 2
theorem abs_sub_eq_two_nsmul_negPart {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a : α) :
|a| - a = 2 a
theorem div_mabs_eq_inv_leOnePart_sq {α : Type u_1} [Lattice α] [CommGroup α] [MulLeftMono α] (a : α) :
a / mabs a = (a⁻ᵐ ^ 2)⁻¹
theorem sub_abs_eq_neg_two_nsmul_negPart {α : Type u_1} [Lattice α] [AddCommGroup α] [AddLeftMono α] (a : α) :
a - |a| = -(2 a)
theorem oneLePart_eq_ite {α : Type u_1} [LinearOrder α] [Group α] {a : α} :
a⁺ᵐ = if 1 a then a else 1
theorem posPart_eq_ite {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} :
a = if 0 a then a else 0
@[simp]
theorem one_lt_oneLePart_iff {α : Type u_1} [LinearOrder α] [Group α] {a : α} :
1 < a⁺ᵐ 1 < a
@[simp]
theorem posPart_pos_iff {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} :
0 < a 0 < a
theorem oneLePart_of_one_lt_oneLePart {α : Type u_1} [LinearOrder α] [Group α] {a : α} (ha : 1 < a⁺ᵐ ) :
theorem posPart_eq_of_posPart_pos {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} (ha : 0 < a) :
a = a
@[simp]
theorem oneLePart_lt {α : Type u_1} [LinearOrder α] [Group α] {a b : α} :
a⁺ᵐ < b a < b 1 < b
@[simp]
theorem posPart_lt {α : Type u_1} [LinearOrder α] [AddGroup α] {a b : α} :
a < b a < b 0 < b
theorem leOnePart_eq_ite {α : Type u_1} [LinearOrder α] [Group α] {a : α} [MulLeftMono α] :
a⁻ᵐ = if a 1 then a⁻¹ else 1
theorem negPart_eq_ite {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} [AddLeftMono α] :
a = if a 0 then -a else 0
@[simp]
theorem one_lt_ltOnePart_iff {α : Type u_1} [LinearOrder α] [Group α] {a : α} [MulLeftMono α] :
1 < a⁻ᵐ a < 1
@[simp]
theorem negPart_pos_iff {α : Type u_1} [LinearOrder α] [AddGroup α] {a : α} [AddLeftMono α] :
0 < a a < 0
@[simp]
theorem leOnePart_lt {α : Type u_1} [LinearOrder α] [Group α] {a b : α} [MulLeftMono α] [MulRightMono α] :
a⁻ᵐ < b b⁻¹ < a 1 < b
@[simp]
theorem negPart_lt {α : Type u_1} [LinearOrder α] [AddGroup α] {a b : α} [AddLeftMono α] [AddRightMono α] :
a < b -b < a 0 < b
@[simp]
theorem Pi.oneLePart_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → Group (α i)] (f : (i : ι) → α i) (i : ι) :
f⁺ᵐ i = (f i)⁺ᵐ
@[simp]
theorem Pi.posPart_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → AddGroup (α i)] (f : (i : ι) → α i) (i : ι) :
f i = (f i)
@[simp]
theorem Pi.leOnePart_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → Group (α i)] (f : (i : ι) → α i) (i : ι) :
f⁻ᵐ i = (f i)⁻ᵐ
@[simp]
theorem Pi.negPart_apply {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → AddGroup (α i)] (f : (i : ι) → α i) (i : ι) :
f i = (f i)
theorem Pi.oneLePart_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → Group (α i)] (f : (i : ι) → α i) :
f⁺ᵐ = fun (i : ι) => (f i)⁺ᵐ
theorem Pi.posPart_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → AddGroup (α i)] (f : (i : ι) → α i) :
f = fun (i : ι) => (f i)
theorem Pi.leOnePart_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → Group (α i)] (f : (i : ι) → α i) :
f⁻ᵐ = fun (i : ι) => (f i)⁻ᵐ
theorem Pi.negPart_def {ι : Type u_2} {α : ιType u_3} [(i : ι) → Lattice (α i)] [(i : ι) → AddGroup (α i)] (f : (i : ι) → α i) :
f = fun (i : ι) => (f i)