Casts of rational numbers into linear ordered fields. #
Coercion from ℚ
as an order embedding.
Instances For
@[simp]
theorem
Rat.castOrderEmbedding_apply
{K : Type u_5}
[LinearOrderedField K]
(a✝ : ℚ)
:
Rat.castOrderEmbedding a✝ = ↑a✝
Alias of the reverse direction of Rat.cast_le
.
Alias of the reverse direction of Rat.cast_lt
.
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Coercion from ℚ
as an order embedding.
Instances For
@[simp]
theorem
NNRat.castOrderEmbedding_apply
{K : Type u_5}
[LinearOrderedSemifield K]
(a✝ : ℚ≥0)
:
NNRat.castOrderEmbedding a✝ = ↑a✝
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
NNRat.cast_le_ofNat
{K : Type u_5}
[LinearOrderedSemifield K]
{p : ℚ≥0}
{n : ℕ}
[n.AtLeastTwo]
:
↑p ≤ OfNat.ofNat n ↔ p ≤ OfNat.ofNat n
@[simp]
theorem
NNRat.ofNat_le_cast
{K : Type u_5}
[LinearOrderedSemifield K]
{p : ℚ≥0}
{n : ℕ}
[n.AtLeastTwo]
:
OfNat.ofNat n ≤ ↑p ↔ OfNat.ofNat n ≤ p
@[simp]
theorem
NNRat.cast_lt_ofNat
{K : Type u_5}
[LinearOrderedSemifield K]
{p : ℚ≥0}
{n : ℕ}
[n.AtLeastTwo]
:
↑p < OfNat.ofNat n ↔ p < OfNat.ofNat n
@[simp]
theorem
NNRat.ofNat_lt_cast
{K : Type u_5}
[LinearOrderedSemifield K]
{p : ℚ≥0}
{n : ℕ}
[n.AtLeastTwo]
:
OfNat.ofNat n < ↑p ↔ OfNat.ofNat n < p
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
NNRat.preimage_cast_Icc
{K : Type u_5}
[LinearOrderedSemifield K]
(p q : ℚ≥0)
:
NNRat.cast ⁻¹' Set.Icc ↑p ↑q = Set.Icc p q
@[simp]
theorem
NNRat.preimage_cast_Ico
{K : Type u_5}
[LinearOrderedSemifield K]
(p q : ℚ≥0)
:
NNRat.cast ⁻¹' Set.Ico ↑p ↑q = Set.Ico p q
@[simp]
theorem
NNRat.preimage_cast_Ioc
{K : Type u_5}
[LinearOrderedSemifield K]
(p q : ℚ≥0)
:
NNRat.cast ⁻¹' Set.Ioc ↑p ↑q = Set.Ioc p q
@[simp]
theorem
NNRat.preimage_cast_Ioo
{K : Type u_5}
[LinearOrderedSemifield K]
(p q : ℚ≥0)
:
NNRat.cast ⁻¹' Set.Ioo ↑p ↑q = Set.Ioo p q
@[simp]
theorem
NNRat.preimage_cast_Ici
{K : Type u_5}
[LinearOrderedSemifield K]
(p : ℚ≥0)
:
NNRat.cast ⁻¹' Set.Ici ↑p = Set.Ici p
@[simp]
theorem
NNRat.preimage_cast_Iic
{K : Type u_5}
[LinearOrderedSemifield K]
(p : ℚ≥0)
:
NNRat.cast ⁻¹' Set.Iic ↑p = Set.Iic p
@[simp]
theorem
NNRat.preimage_cast_Ioi
{K : Type u_5}
[LinearOrderedSemifield K]
(p : ℚ≥0)
:
NNRat.cast ⁻¹' Set.Ioi ↑p = Set.Ioi p
@[simp]
theorem
NNRat.preimage_cast_Iio
{K : Type u_5}
[LinearOrderedSemifield K]
(p : ℚ≥0)
:
NNRat.cast ⁻¹' Set.Iio ↑p = Set.Iio p
@[simp]
theorem
NNRat.preimage_cast_uIcc
{K : Type u_5}
[LinearOrderedSemifield K]
(p q : ℚ≥0)
:
NNRat.cast ⁻¹' Set.uIcc ↑p ↑q = Set.uIcc p q
@[simp]
theorem
NNRat.preimage_cast_uIoc
{K : Type u_5}
[LinearOrderedSemifield K]
(p q : ℚ≥0)
:
NNRat.cast ⁻¹' Ι ↑p ↑q = Ι p q
Extension for Rat.cast.
Instances For
Extension for NNRat.cast.