Documentation

Bml.bigConDis

Equations
Instances For
    Equations
    Instances For
      theorem vocOfBigDis {x : Char} {l : List Formula} :
      x HasVocabulary.voc (bigDis l)φl, x HasVocabulary.voc φ
      theorem vocOfBigCon {x : Char} {l : List Formula} :
      x HasVocabulary.voc (bigCon l)φl, x HasVocabulary.voc φ
      @[simp]
      @[simp]
      theorem consingle {f : Formula} :
      bigCon [f] = f
      Equations
      Instances For
        @[simp]
        theorem disempty :
        @[simp]
        theorem dissingle {f : Formula} :
        dis [f] = f
        Equations
        Instances For
          @[simp]
          @[simp]
          theorem disconsingle {f : Formula} :
          discon [[f]] = f
          theorem conEvalHT {X : List Formula} {f : Formula} {W : Type} {M : KripkeModel W} {w : W} :
          Evaluate (M, w) (bigCon (f :: X)) Evaluate (M, w) f Evaluate (M, w) (bigCon X)
          theorem conEval {W : Type} {M : KripkeModel W} {X : List Formula} {w : W} :
          Evaluate (M, w) (bigCon X) fX, Evaluate (M, w) f
          theorem disconEval {W : Type} {M : KripkeModel W} {w : W} {N : } (XS : List (List Formula)) :
          XS.length = N(Evaluate (M, w) (discon XS) YXS, fY, Evaluate (M, w) f)
          Equations
          Instances For
            Equations
            Instances For
              class HasUplus (α : TypeType) :
              Instances
                Equations
                theorem disconAnd {XS YS : List (List Formula)} :
                theorem disconOr {XS YS : List (List Formula)} :
                theorem union_elem_uplus {XS YS : Finset (Finset Formula)} {X Y : Finset Formula} :
                X XSY YSX Y XSYS
                @[simp]
                theorem bigDis_sat {W : Type} {l : List Formula} {M : KripkeModel W} {w : W} :
                Evaluate (M, w) (bigDis l) φl, Evaluate (M, w) φ
                @[simp]
                theorem bigCon_sat {W : Type} {l : List Formula} {M : KripkeModel W} {w : W} :
                Evaluate (M, w) (bigCon l) φl, Evaluate (M, w) φ
                theorem bigConNeg_union_sat_down {X : Finset Formula} {l : List Formula} :
                HasSat.Satisfiable (X {bigCon (List.map (fun (x : Formula) => ~x) l)})φl, HasSat.Satisfiable (X {~φ})
                theorem eval_neg_BigDis_iff_eval_bigConNeg {W : Type} {l : List Formula} {M : KripkeModel W} {w : W} :
                Evaluate (M, w) (~bigDis l) Evaluate (M, w) (~~bigCon (List.map (fun (x : Formula) => ~x) l))
                theorem eval_negBigCon_iff_eval_bigDisNeg {W : Type} {l : List Formula} {M : KripkeModel W} {w : W} :
                Evaluate (M, w) (~bigCon l) Evaluate (M, w) (bigDis (List.map (fun (x : Formula) => ~x) l))