theorem
vocOfBigDis
{x : Char}
{l : List Formula}
:
x ∈ HasVocabulary.voc (bigDis l) → ∃ φ ∈ l, x ∈ HasVocabulary.voc φ
theorem
vocOfBigCon
{x : Char}
{l : List Formula}
:
x ∈ HasVocabulary.voc (bigCon l) → ∃ φ ∈ l, x ∈ HasVocabulary.voc φ
Equations
- «term_⊎_» = Lean.ParserDescr.trailingNode `«term_⊎_» 77 77 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "⊎") (Lean.ParserDescr.cat `term 78))
Instances For
Equations
- finsetHasUplus = { pairunion := pairunionFinset }
@[simp]
@[simp]
theorem
bigDis_union_sat_down
{X : Finset Formula}
{l : List Formula}
:
HasSat.Satisfiable (X ∪ {bigDis l}) → ∃ φ ∈ l, HasSat.Satisfiable (X ∪ {φ})
theorem
bigCon_union_sat_down
{X : Finset Formula}
{l : List Formula}
:
HasSat.Satisfiable (X ∪ {bigCon l}) → ∀ φ ∈ l, HasSat.Satisfiable (X ∪ {φ})
theorem
bigConNeg_union_sat_down
{X : Finset Formula}
{l : List Formula}
:
HasSat.Satisfiable (X ∪ {bigCon (List.map (fun (x : Formula) => ~x) l)}) → ∀ φ ∈ l, HasSat.Satisfiable (X ∪ {~φ})
theorem
sat_negBigCon_iff_sat_bigDisNeg
{l : List Formula}
:
HasSat.Satisfiable (~bigCon l) ↔ HasSat.Satisfiable (bigDis (List.map (fun (x : Formula) => ~x) l))